
CoCoALib - Bug #971

CheckForInterrupt does not work in the expected way

14 Nov 2016 11:10 - John Abbott

Status: Closed Start date: 14 Nov 2016

Priority: Normal Due date:

Assignee: John Abbott % Done: 100%

Category: Improving Estimated time: 3.01 hours

Target version: CoCoALib-0.99550 spring 2017 Spent time: 3.25 hours

Description

Looking at the call to CheckForInterrupt in GReductor::myReduceCurrentSPoly (around line 760 of TmpGReductor.C), I see that

Anna had to do something strange to make it work.

Investigate, and arrange for a simple call to CheckForInterrupt to suffice.

Related issues:

Related to CoCoALib - Feature #714: Interrupt mechanism Closed 19 May 2015

Related to CoCoA-5 - Feature #744: Handle interrupts more helpfully Closed 01 Jul 2015

Related to CoCoALib - Design #982: Catching interrupts in example progs? Closed 25 Nov 2016

Related to CoCoALib - Bug #1458: Redesign interrupt mechanism? Rejected 10 May 2020

History

#1 - 14 Nov 2016 11:12 - John Abbott

- Related to Feature #714: Interrupt mechanism added

#2 - 14 Nov 2016 13:03 - John Abbott

- Status changed from New to In Progress

- % Done changed from 0 to 10

As far as I can see, the CoCoA-5 interpreter needs to be modified so that it catches both CoCoA::ErrorInfo and CoCoA::InterruptReceived objects. At

the moment it seems to ignore the latter... to be honest I am not even sure how it achieves the current behaviour.

There are 11 places where Interpreter.C catches ErrorInfo -- why so many???

Do I need to add another catch command (for InterruptReceived) after each one?

The other problem is what to do once I have caught an InterruptReceived. With an ErrorInfo the existing code simply creates a RuntimeException

object (incl. information about where in the CoCoA-5 source the interpreter had reached).

In amongst the CoCoA-5 code, I see that there is also InterruptException; this is presumably the correct one to throw, but in its current form the sole

constructor is very limiting. I had better add some more ctors... sigh!

#3 - 14 Nov 2016 13:07 - John Abbott

In issue #714 I had guessed that the only place I needed to catch InterruptReceived was around line 2678 of Interpreter.C.

I now report that this does not suffice. Since CoCoALib watches for interrupts in RingBase::mySequentialPower, I tried computing the 1000th

power of a polynomial, and then send an interrupt during the computation. The interpreter did stop when I interrupted the computation, but it gave no

message such as "Interrupt received". This happened only when i added the appropriate catch statement after line 1415.

19 Apr 2024 1/4

https://cocoa.dima.unige.it/redmine/issues/714

#4 - 14 Nov 2016 16:11 - John Abbott

- Assignee set to John Abbott

- % Done changed from 10 to 20

I have made some changes to Interpreter.C (mostly adding catch commands for InterruptReceived).

I have not (yet) changed the way Anna used CheckForInterrupt in TmpGReductor.C; while its use in RingBase::mySequentialPower is as I had

intended. The following transcript show the slightly different behaviour which CoCoA-5 exhibits when CoCoALib is interrupted:

>>> f := x+y+z;

>>> g := f^300; // START THIS THEN INTERRUPT IT!

 C-c C-c

>>> CoCoA interrupted <<<

--> ERROR:

*** Interrupted ***

--> g := f^300; // START THIS THEN INTE ...

--> ^

>>> S := support(f^30);

>>> Sshifted := subst(S,[[x,x-2],[y,y+3],[z,z-5]]);

>>> I := ideal(Sshifted); // strangely slow!

>>> GB := GBasis(I); // START THIS THEN INTERRUPT IT!

 C-c C-c

>>> CoCoA interrupted <<<

--> ERROR: InterruptReceived

--> GB := GBasis(I); // START THIS THEN INTERRUP ...

--> ^^^^^^^^^

>>>

Comments? Opinions? Preferences?

19 Apr 2024 2/4

#5 - 14 Nov 2016 21:53 - Anna Maria Bigatti

Cane we have something more compact like this?

>>> f := x+y+z;

>>> g := f^300; // START THIS THEN INTERRUPT IT!

 C-c C-c

>>> CoCoA interrupted <<<

--> ERROR: *** Interrupted ***

--> g := f^300; // START THIS THEN INTE ...

--> ^

#6 - 18 Nov 2016 20:52 - John Abbott

- Related to Feature #744: Handle interrupts more helpfully added

#7 - 18 Nov 2016 21:58 - John Abbott

- % Done changed from 20 to 50

I have now changed the call to CheckForInterrupt in TmpGReductor to the simple call that I had expected to see, and it works as I

hoped/intended/expected/wanted/etc.

Since it is now just a matter of inserting calls to CheckForInterrupt("Fn name"); I am hoping that soon several new calls will be judiciously inserted so

that lengthy CoCoALib computations can be interrupted with only a reasonable wait for recognition of the interruption.

#8 - 25 Nov 2016 17:30 - John Abbott

- Status changed from In Progress to Feedback

- % Done changed from 50 to 90

#9 - 25 Nov 2016 17:49 - John Abbott

- Related to Design #982: Catching interrupts in example progs? added

#10 - 29 Mar 2017 18:09 - John Abbott

- Status changed from Feedback to Closed

- Target version changed from CoCoALib-0.99560 to CoCoALib-0.99550 spring 2017

- % Done changed from 90 to 100

#11 - 28 Apr 2017 09:30 - Anna Maria Bigatti

- Estimated time set to 3.01 h

#12 - 10 May 2020 11:54 - John Abbott

19 Apr 2024 3/4

- Related to Feature #1457: Make SmoothFactor interruptible added

#13 - 10 May 2020 11:55 - John Abbott

- Related to deleted (Feature #1457: Make SmoothFactor interruptible)

#14 - 10 May 2020 12:06 - John Abbott

- Related to Bug #1458: Redesign interrupt mechanism? added

Powered by TCPDF (www.tcpdf.org)

19 Apr 2024 4/4

http://www.tcpdf.org

