
CoCoALib - Design #950

factor and SmoothFactor for integers --> FactorINT, FactorINT_TrialDiv, FactorINT_PollardRho

20 Oct 2016 20:10 - John Abbott

Status: Closed Start date: 20 Oct 2016

Priority: Normal Due date:  

Assignee: John Abbott % Done: 100%

Category: Safety Estimated time: 0.00 hour

Target version: CoCoALib-0.99850 Spent time: 9.10 hours

Description

I can make factor and SmoothFactor for integers faster in some cases by calling IsProbPrime.

The risk is that a factor returned as irreducible (prime) is not; this risk is very low.

Is this acceptable?

Should the user be allowed to stop these "risky" short-cuts?

Discuss.

2022-02 Now called FactorINT, FactorINT_TrialDiv and FactorINT_PollardRho

Related issues:

Related to CoCoALib - Feature #796: CoCoALib function for radical (or SqFree)... Closed 05 Nov 2015

Related to CoCoALib - Design #1159: Add global enum  "verify/DontVerify" Closed 22 Feb 2018

Related to CoCoALib - Slug #1170: SmoothFactor: slow when a factor is found Closed 28 Mar 2018

Related to CoCoALib - Design #1716: Qn: factor for BigInt Closed 29 Nov 2022

History

#1 - 20 Oct 2016 20:10 - John Abbott

- Related to Feature #796: CoCoALib function for radical (or SqFree) of a polynomial added

#2 - 21 Oct 2016 07:46 - Anna Maria Bigatti

ProbSmoothFactor?

or SmoothFactor(n) and SmoothFactor(n, "NoProb")?

#3 - 21 Oct 2016 14:14 - John Abbott

- Status changed from New to In Progress

- % Done changed from 0 to 10

Does that mean that you are in favour of offering the user the choice between a fast (and probably correct) answer, or a potentially (very) slow but

guaranteed correct answer?

What should the default choice be?  Perhaps there should be a global flag (set in the GlobalManager?) which says what the default behaviour should

be?

#4 - 06 Nov 2017 14:03 - John Abbott

- Target version changed from CoCoALib-0.99560 to CoCoALib-0.99600

#5 - 09 Mar 2018 18:16 - John Abbott

- Related to Design #1159: Add global enum  "verify/DontVerify" added

09 Apr 2024 1/5



#6 - 09 Mar 2018 18:18 - John Abbott

- Description updated

Maybe there could be a fn called IsPrime3 which is guaranteed (reasonably) fast, and returns a bool3?

#7 - 28 Mar 2018 20:25 - John Abbott

- Related to Slug #1170: SmoothFactor: slow when a factor is found added

#8 - 12 Jun 2018 16:42 - John Abbott

- Target version changed from CoCoALib-0.99600 to CoCoALib-0.99650 November 2019

#9 - 08 Feb 2019 21:05 - John Abbott

- Target version changed from CoCoALib-0.99650 November 2019 to CoCoALib-1.0

#10 - 14 Mar 2019 13:35 - John Abbott

Here is an effect of the idea of testing the remaining factor for primality.

>>> N := NextPrime(2^60);

>>> SmoothFactor(N, 1100000000);

record[RemainingFactor := 1152921504606847009, factors := [], multiplicities := []]

--->  time about 0.01s

>>> Pmax := 1100000000;

>>> p1 := NextPrime(Pmax);

>>> p2 := NextPrime(p1);

>>> NN := p1*p2;

>>> SmoothFactor(NN, 1100000000);

record[RemainingFactor := 1210000028600000153, factors := [], multiplicities := []]

time is about 4.6s

 

There is a big difference in speed depending on whether the remaining factor is prime or not...  This is a natural consequence, but is it desirable?

#11 - 14 Oct 2020 13:26 - John Abbott

- % Done changed from 10 to 20

I have just checked what the code currently does:  if many primes have been tried without finding a factor and if the remaining is small (less than

2^64) then IsPrime is called, otherwise no primality test is applied.

One reason for this strategy is for instance trying SmoothFactor(1+factorial(10000), 10000).

Applying IsProbPrime to 1+factorial(100000) takes about 84s on my computer; simply trying all primes up to 10000 takes about 0.02s.  So even 1 call

to IsProbPrime is highly disadvantageous.  See also #1170.

09 Apr 2024 2/5

https://cocoa.dima.unige.it/redmine/issues/1170


This is not really a main feature of CoCoALib; it would be better to delegate factorization to some external library (which?)

What to do?

#12 - 20 Oct 2021 15:56 - John Abbott

Robbiano would like factor to work for integers (or some integers, at least).

How can we do this reasonably?  Maybe it should simply call SmoothFactor with some predefined bound? Perhaps also call PollardRho?

#13 - 10 Jan 2022 17:15 - John Abbott

- Assignee set to John Abbott

I have now a prototype fn for finding one factor using PollardRhoSeq.

It takes as input N>1 to be factorized, and an upper bound on the number of iterations.

If no factor is found, the return value is 0 (which is obviously impossible).

An interesting test case is N := 4087  which requires PollardRho to try a=2 and a=3 (where the poly is x^2+a).

[I did not find any requiring a>3; but did not look that hard].

Also  N=13861

An example with 3 factors: N=28214231

#14 - 20 Jan 2022 20:05 - John Abbott

- % Done changed from 20 to 30

Currently my prototype function is called factor_PollardRho.

It takes 2 args: N to be factorized (non-zero integer),

iters number of iterations [time is roughly linear in number of iters]

Should there be a variant with timeout?  Maybe that makes sense only in CoCoALib,

and if there is a structure which can resume computing from where timeout occurred?

If we want an easy-to-use factorization function for integers, it should probably

do just a few iterations of SmoothFactor  (upto 1000?  Surely not more) and then

switch to PollardRho.  I do not really want to invest time and effort into making

a more sophisticated integer factorizer.

#15 - 21 Jan 2022 12:12 - John Abbott

Anna thinks a name closer to SmoothFactor would be more appropriate because the fns both take 2 args...

No final decision.

#16 - 21 Jan 2022 12:14 - Anna Maria Bigatti

Drastic change:  FactorBound, FactorIter  or  FactorINTBound, FactorINTIter  or  FactorINT_bound, FactorINT_iter?

09 Apr 2024 3/5



#17 - 26 Jan 2022 12:46 - John Abbott

- Target version changed from CoCoALib-1.0 to CoCoALib-0.99850

Another proposal:

FactorINT(N,TimeOut)  tries both TrialDiv and PollardRho; maybe also does IsProbPrime check?

FactorINT_TrialDiv(N,pmax)  trial division upto pmax

FactorINT_PollardRho(N, iters)  PollardRho method with upto iters iterations (gives 0 if no factor found)

Opinions?

#18 - 27 Jan 2022 12:29 - Anna Maria Bigatti

John Abbott wrote:

FactorINT_TrialDiv(N,pmax)  trial division upto pmax

Opinions?

 

maybe just FactorINT_div(N,pmax)  or  FactorINT_smooth(N,pmax)  (to recall its previus name)?

#19 - 27 Jan 2022 14:24 - John Abbott

I suggest making SmoothFactor obsolescent, and just forward the call to FactorINT_TrialDiv.

I think I prefer FactorINT_TrialDiv to FactorINT_smooth because the first name is clearer to everyone,

also FactorINT_PollardRho indicates the method used so it would be more coherent to use the name

FactorINT_TrialDiv since that also identifies the method used.

I do wonder whether there would be any sense in letting the user specify a TimeOut (instead of some other

upper limit).  Or perhaps both sorts of limit at the same time?

#20 - 31 Jan 2022 22:12 - John Abbott

- % Done changed from 30 to 60

I have now implemented FactorINT,  FactorINT_TrialDiv  and FactorINT_PollardRho.

SmoothFactor is now obsolete.

Doc has been updated.  Tests and examples have been updated (but no new tests added).

#21 - 01 Feb 2022 08:38 - Anna Maria Bigatti

- Subject changed from factor and SmoothFactor for integers to factor and SmoothFactor for integers --> FactorINT, FactorINT_TrialDiv,

FactorINT_PollardRho

09 Apr 2024 4/5



- Description updated

#22 - 02 Feb 2022 11:16 - John Abbott

Oh joy!

Have fun if you decide to document functions whose name contain an underscore: LaTeX gives its usual cryptic, unhelpful error messages (sigh!)

I have reworded the doc to avoid the underscores.

Does anyone object to having fn names containing underscores?

If so, what do you propose as an alternative?

#23 - 13 Mar 2023 22:02 - John Abbott

- Status changed from In Progress to Closed

- % Done changed from 60 to 100

The current impl is good enough for most purposes.

Some factors may be reducible if PollardRho is used.

Too bad.

Closing.

#24 - 13 Mar 2023 22:02 - John Abbott

- Related to Design #1716: Qn: factor for BigInt added

Powered by TCPDF (www.tcpdf.org)

09 Apr 2024 5/5

http://www.tcpdf.org

