
CoCoALib - Slug #881

ReadExpr is too slow on large polys

09 May 2016 21:10 - John Abbott

Status: Closed Start date: 09 May 2016

Priority: Normal Due date:

Assignee: John Abbott % Done: 100%

Category: Improving Estimated time: 12.12 hours

Target version: CoCoALib-0.99560 Spent time: 12.20 hours

Description

Recently Mario has passed me some large polys in their printed form (i.e. sum of terms). Reading them by pasting the printout as

input to CoCoA-5 is impractically slow (because when the interpreter reads a poly it effectively uses a quadratic algorithm).

Reading is faster with ReadExpr, but still not fast enough (e.g. 15 mins to read just one low-deg poly with about 100000 terms in 100

variables).

Make ReadExpr significantly faster.

Related issues:

Related to CoCoALib - Slug #884: DistrMPolyInlPP::myPushFront and DistrMPolyI... New 24 May 2016

Related to CoCoALib - Feature #801: Test whether a symbol is in a ring New 09 Nov 2015

Related to CoCoALib - Slug #1238: ReadExpr is too slow on long lists of mono... Closed 21 Jan 2019

Related to CoCoA-5 - Slug #1629: RingElem slow with many indets Closed 08 Nov 2021

History

#1 - 09 May 2016 21:13 - John Abbott

I have implemented a first improvement by implementing a new fn ReadExprInSparsePolyRing which uses geobuckets to store sums. This has

already made quite a big difference (e.g. that big poly now takes 15mins instead of much longer (I don't recall exactly))

I hope to check this in shortly -- the code is fairly simple, so should be safe.

#2 - 09 May 2016 21:23 - John Abbott

Since my "stupid" MacBook cannot profile, I can only guess that reading a symbol is probably quite costly (see line 79 of RingElemInput.C which calls

RingElem to convert the symbol into a RingElem value).

The conversion of a symbol into a RingElem should ideally be done using a std::map. This could be done inside the ring itself, or outside.

Currently it uses a shockingly inefficient technique: each call to RingElem(..., symbol) creates a std::vector, and checks that the symbol is there (error

if not). In the case of a SparsePolyRing the actual conversion then recreates the same list of symbols, and checks again if it is there, and if so

generates the answer.

The conversion table of symbol-to-ringelem should be created only once; perhaps it is best if this is inside the ring?

#3 - 09 May 2016 21:49 - John Abbott

I did a quick test:

QQa1 ::= QQ[a];

QQa100 ::= QQ[a[0..99]];

26 Apr 2024 1/5

P1 ::= QQa1[x];

P100 ::= QQa100[x];

str := "(x^10000-1)/(x-1) expanded out";

t0 := CpuTime();

j1 := ReadExpr(P1, str);

t1 := CpuTime();

j2 := ReadExpr(P100,str);

t2 := CpuTime();

println "Time to read in P1: ", FloatStr(t1-t0);

println "Time to read in P100: ", FloatStr(t2-t1);

The times recorded were about 0.28s and 1.3s. So the presence of indets which are not used has a significant cost.

For comparison I tried the test again after disabling the improvement describe in comment 1; the times reported were identical! Aha that's because

adding a new terms whose PP is smaller than those in the poly is handled specially.

Anyway, for Mario's poly with 84 indets the time dropped from about 17s to 9s.

#4 - 10 May 2016 13:25 - John Abbott

I have hacked the ReadExpr code so that it produces a table of symbols (of type std::map).

This improved the read time for Mario's poly from about 9s to less than 1s, so it is definitely worth doing.

I believe the clean way to do this is to put the std::map inside the ring; then every call to RingElem(R, sym) will be quick because it can use the

symbol table :-) This should also mean that ReadExpr code already in CVS will suddenly become faster.

#5 - 10 May 2016 15:33 - John Abbott

- Status changed from New to In Progress

- % Done changed from 0 to 10

I have done a quick profile of the current version of the code (using the ad hoc impl with std::map). Now most (90+%) of the execution time is in

DistrMPolyInlPP::myAddClear. I'm now sure how to improve this :-(Yet a further improvement would really be needed.

#6 - 10 May 2016 16:19 - Anna Maria Bigatti

John Abbott wrote:

26 Apr 2024 2/5

I have done a quick profile of the current version of the code (using the ad hoc impl with std::map). Now most (90+%) of the execution time is in

DistrMPolyInlPP::myAddClear. I'm now sure how to improve this :-(Yet a further improvement would really be needed.

Is it a very long polynomial? I suppose we then should use in ReadExpr

geobucket f(P); instead of RingElem f(P);

#7 - 10 May 2016 16:36 - John Abbott

I have already implemented (and checked in) a version which uses geobuckets when the ring is a sparsepolyring.

Mario says his polys are printed out using the standard term ordering (StdDegRevLex presumably).

So maybe just using PushBack will make it faster still. I hope to investigate this evening.

Some polys have more than 100000 terms, and they seem to take several minutes to read.

#8 - 11 May 2016 12:09 - John Abbott

- Assignee set to John Abbott

I wrote a very hacked version which uses PushBack, and it went considerably faster (but it also gave SEGV on some examples).

I think this also explains what I observed with the profiler, namely that DistrMPolyInlPP::myAddClear was very expensive (because it was running

through all the terms in the poly).

I am now trying to rewrite DistMPolyInlPP so that myAddClear can be fast: if the LPP of the poly to be added comes after the last term, then it is just

concatenated. This needs a pointer to the last term. There are some complications in myRemoveSummand and myInsertSummand.

#9 - 11 May 2016 14:32 - John Abbott

- % Done changed from 10 to 20

I have now finished the main changes to DistrMPolyInlPP, and especially myAddClear. Time to read a correctly ordered polynomial has now

decreased significantly (by a factor of about 20-30); time to read a "randomly ordered" polynomial is much the same as right before this change.

I can now do Mario's test case in around 10 mins, whereas yesterday it was 5+ hours. :-)

Next step: clean up all the changes, and check in (and maybe write some documentation).

#10 - 11 May 2016 14:48 - John Abbott

I reran the test to read Mario's polynomial: now it takes about 0.4s (with the "wrong" term-ordering), and about 0.25 s with the "right" term-ordering

(lex in this case).

Probably the case of "wrong" term-ordering would be even faster if the terms were read into separate polynomials (one term in each) in a vector, and

then sort the vector, and finally sum the terms.

26 Apr 2024 3/5

Note that for larger polys the difference between "wrong" order (degrevlex when the poly was written in lex) and the "right" order is usually much more

marked (typically 20-30 times slower).

#11 - 18 May 2016 13:44 - John Abbott

- Status changed from In Progress to Resolved

- % Done changed from 20 to 70

I have modified ReadExprInSparsePolyRing so that sums of terms are handled specially: the terms are simply appended to a vector, then at the end

the vector is sorted then summed. The impl is simple rather than superfast; anyway it works fairly well even if the terms in the input are not ordered

the same way as in the ring.

Further ideas: also have a single polynomial to which terms may be appended (pre- or post-), so that if the input terms are in the right order we get

the correct poly directly. This would require a function which can detect whether "fast polynomial concatenation" is possible (and perhaps actually do

the concatenation when it is possible). This ought to minimise copying/reallocation and also comparisons between PPs.

In Mario's application, reading the poly is still much slower (e.g. 10x) than testing for irreducibility... which seems a bit ridiculous!

#12 - 24 May 2016 15:25 - John Abbott

- Related to Slug #884: DistrMPolyInlPP::myPushFront and DistrMPolyInlPP::myPushBack inefficient if arg is a PP added

#13 - 25 May 2016 17:01 - John Abbott

Using the profiler on a linux box I noticed that DistrMPolyInlPP::myPushFront was using surprisingly much time. I had added this as issue #884.

I wrote an ad hoc reader and writer of polynomials, and observed approximately 5 times speed up (should be more if the myPushFront problem can

be improved). Now I wonder whether it is worth developing a better format for communication between processes (sacrificing human-readability); this

is what the OpenMath-like interface was for (but it seems implausible that the OpenMath-like XML-based format could be as fast as the simple ad hoc

format).

#14 - 16 Sep 2016 16:13 - John Abbott

- Target version changed from CoCoALib-0.99550 spring 2017 to CoCoALib-0.99560

#15 - 06 Nov 2017 13:56 - John Abbott

- Status changed from Resolved to Feedback

- % Done changed from 70 to 90

#16 - 06 Nov 2017 14:11 - John Abbott

- Related to Feature #801: Test whether a symbol is in a ring added

#17 - 08 Nov 2017 15:59 - John Abbott

- Status changed from Feedback to Closed

- % Done changed from 90 to 100

- Estimated time set to 12.12 h

I have just tested it now, and it seems adequately fast (until someone needs really big polys).

Reading ChebyshevPoly(10000,x) took less than 1sec; the string was about 15Mbytes long.

26 Apr 2024 4/5

https://cocoa.dima.unige.it/redmine/issues/884

Reading (x^100-1)*(y^100-1)*(z^100-1)/((x-1)*(y-1)*(z-1)) tok about 9secd; the string was about 15Mbytes long, poly has 1000000 terms.

Closing.

#18 - 21 Jan 2019 16:00 - Anna Maria Bigatti

- Related to Slug #1238: ReadExpr is too slow on long lists of monomial with many indets: ---> use RingElems instead added

#19 - 26 Nov 2021 14:58 - John Abbott

- Related to Slug #1629: RingElem slow with many indets added

Powered by TCPDF (www.tcpdf.org)

26 Apr 2024 5/5

http://www.tcpdf.org

