CoCoALib - Slug \#837

factor is very slow on some simple input polynomials

06 Jan 2016 14:32 - John Abbott

Status:	New	Start date:	06 Jan 2016
Priority:	Normal	Due date:	
Assignee:		\% Done:	0\%
Category:	Improving	Estimated time:	0.00 hour
Target version:	CoCoALib-1.0	Spent time:	0.25 hour
Description			
The problem lies in CoCoALib, but for simplicity I present it here as CoCoA-5 code.			
factor($x^{\wedge} 780+780$) is very slow; so is factor($x^{\wedge} 988+988$).			
In contrast factor (($\left.3^{*} 5^{\star} 7^{*} 11^{*} 17^{*} x\right)^{\wedge} 988+988$) is fairly fast (about 5 s); and factor $\left(\left(7^{*} 11^{*} 17^{*} 19^{*} x\right)^{\wedge} 780+780\right)$ is fairly fast (about $9 s$).			
Presumably the problem is that not enough primes are tried; NTL uses a trick where extra primes are tried if the factor search becomes slow. Perhaps do something similar?			

History

\#1-06 Jan 2016 14:40-John Abbott
My "fast" machine in Kassel takes more than 60000s for $x^{\wedge} 780+780$, and 1333s for $x^{\wedge} 988+988$.
In comparison all polys of the form $x^{\wedge} n+n$ for n ranging from 1 to 1000 (but excluding the two slow cases) can be factorized in just 164 s on $m y$ "fast" machine in Kassel.

