CoCoA-5 - Feature #761

Evaluating a QuasiPol
27 Aug 2015 17:48 - Christof Soeger

Status: Closed Start date: 27 Aug 2015
Priority: Normal Due date:

Assignee: John Abbott % Done: 100%
Category: CoCoA-5 function: new Estimated time: 2.00 hours
Target version: CoCoA-5.1.3/4 Jan 2016 Spent time: 0.85 hour

Description

There should be an CoCoAS5 function for evaluating a QuasiPoly. There is on in CoCoALib but we probably cannot use it easily
because QuasiPoly is no CoCoAb5 type.

History

#1 - 28 Aug 2015 08:58 - Anna Maria Bigatti

- Category set to CoCoA-5 function: new

I don't know how to do it (and if it is possible), but we could return a QuasiPoly in CoCoA-5 as a tagged object (tag "QuasiPoly") this would make it a
kind of //CoCoA-5 type//
We'll see next week ;-)

#2 - 02 Sep 2015 18:03 - Christof Soeger

Here is an example and how you have to evaluate it at the moment

excl := Mat (Z2Z, [
(-1, -1, -1, -1, -1, -1, 1,1, 1,1, 1,1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1],
(-1, -1, 1,1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1],
(1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -11,
(1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1],
1, -1, 1, 1, -1, -1, 1, -1, 1,1, -1, -1, 1, 1, 1,1, 1,1, -1, -1, -1, -1, -1, -1]
1)
ineq := Mat (Zz, [
(-1, -1, -1, -1, -1, -1, 1,1, 1,1, 1,1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1],
(-1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1]
1)
eq := Mat(zz,((1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -111);
v := Mat(zz,[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,111);
CondIn : record[excluded_faces := excl, inequalities := ineq, equations := eq, grading := v, signs := v];
T := CpuTime () ;
C := NmzComputation (CondIn, ["HilbertSeries"]);
"CpuTime = "+DecimalStr (CpuTime ()-T) + "s";
Q := C.HilbertQuasiPolynomial;
// Q0]
eval (Q[1],[0]);
// periode
len (Q);
// Q[13]
eval (Q[2],[13]);
20 Apr 2024 12




I would like to do just eval(Q,13). Since it is no type we probably have to give it a different clear name, like evalQuasiPoly(Q,13).

#3 - 02 Sep 2015 18:17 - Christof Soeger
- % Done changed from 0 to 50

Ups, there is already NmzEvaluateHilbertQuasiPolynomial with exactly that functionality. But it has no documentation.

#4 - 03 Sep 2015 16:38 - Anna Maria Bigatti
added example to CoCoAHelp

#5 - 16 Feb 2016 17:06 - John Abbott
- Status changed from New to Feedback

- % Done changed from 50 to 90

This has been present for over 6 months.

Just one question before closing: why does the fn name contain Hilbert?
While the quasi-poly is typically produced as a Hilbert fn, the fn which evaluates it does not care where the quasi-poly came from.

| would suggest the shorter name NmzEvalQuasiPoly;
we use the abbrev Eval for "evaluate" in a few other cases (e.g. EvalHilbertFn);
we use the abbrev Poly for "polynomial” in several cases.

The current name is very long; JAA think it is too long.

#6 - 16 Feb 2016 17:08 - John Abbott

Christof does have a valid point about creating a new "type" (tag?) for QuasiPoly. If we think it is worth considering, we can create a new separate
issue (related to this one).

#7 - 16 Feb 2016 17:18 - Christof Soeger
| already suggested EvalQuasiPoly ;)

The QuasiPoly is a general object in CoCoALib and not in the Normaliz interface. So the evaluation function also shouldn't contain Nmz.

#8 - 17 Feb 2016 11:26 - John Abbott

- Status changed from Feedback to Closed
- Assignee set to John Abbott

- % Done changed from 90 to 100

| have renamed the fn to EvalQuasiPoly, and updated the C5 documentation (and the Normaliz tests).
Closing.

20 Apr 2024 22


http://www.tcpdf.org

