CoCoALib - Slug #725

Example database: Slow ideal equality test
06 Jun 2015 13:14 - John Abbott

Status: New Start date: 06 Jun 2015
Priority: Normal Due date:

Assignee: % Done: 0%
Category: Various Estimated time: 0.00 hour
Target version: CoCoALib-1.0 Spent time: 1.05 hour
Description

This is probably not important, but | wanted to record this example which seems to be unexpectedly slow -- it might be useful for
future testing/tuning.

The example comes from a study of symplectic matrix groups (JAA+Eick). I just wanted to verify that the set of generators | have is
minimal (i.e. non of the generators is redundant). There are 12 generators to test for redundancy; the 10th leads to a much slower
computation than the rest (more time than all the rest put together, | believe).

Ideally | want to do the computation over QQ, but | actually did it over ZZ/(3) hoping it would be faster.

n := 3; // almost instant with parameter n=2

use P ::= QQ[x[1..2*n, 1..2*n]l];

use P = 72Z/(3) [x[1..2*n, 1..2*n]];

M := mat([[x[i,3] | 1 in 1..2*n] | J in 1..2*n]);
Id := IdentityMat (P, n);

Z :=mat (P, [[0 | 1 in 1..n] | J in 1..n]);

omega := BlockMat ([[Z,Id], [-Id,Z2]]);

CondMat := transposed (M) *omega*M - omega;

G := [1;

for i:=1 to 2*n do
for j:=i+1 to 2*n do
append (ref G, CondMat[i, j]l);
endfor;
endfor;
I := ideal (G);

—— This loop is very slow when j=10
for j:=1 to len(G) do

t0 := CpuTime () ;

test := ideal (WithoutNth (G, j)) = I;

println "test for j=",3j," result=",test," time=",TimeFrom(tO0);
endfor;

Related issues:
Related to CoCoALib - Feature #1267: Ideal equality In Progress 28 Mar 2019

History

#1 - 06 Jun 2015 13:19 - John Abbott

Re-running the program (over QQ) | get the following output (still incomplete):

result=false time=1.681
result=false time=45.491

test for

test for

test for j=1 result=false time=10.481
test for j=2 result=false time=48.799
test for j=3 result=false time=23.532
test for j=4 result=false time=6.957
j=5
Jj=6

20 Apr 2024 1/4

So it is clear that there is considerable variability in time even among the "fast" cases. The case j=7 is quite slow, but j=10 seemed to be much
slower...

| suppose the main cost is computing a G-basis for the ideal with one generator removed.

#2 - 06 Jun 2015 14:25 - John Abbott

Progress...

test for j=7 result=false time=1805.911
test for j=8 result=false time=18.879
test for j=9 result=false time=5.747

Note: j=10 took 8400s over ZZ/(3) -- now my computer's rather warm :-/

#3 - 06 Jun 2015 20:32 - John Abbott
It has finally finished:

test for j=10 result=false time=19217.141
test for j=11 result=false time=4650.939
test for j=12 result=false time=31.482
test for j=13 result=false time=30.232
test for j=14 result=false time=14.689
test for j=15 result=false time=59.276

These times are for computation over QQ.

#4 - 06 Jun 2015 21:17 - Anna Maria Bigatti

20 Apr 2024 2/4

Instead of checking equality you should just check whether g_j is in the ideal generated by the others. However, this will not make a big difference in

speed. The input is not homogeneous, is it?

#5 - 06 Jun 2015 22:46 - John Abbott

Anna, you are right (in principle). In practice, | think almost the whole time is spent computing a G-basis (rather than using the G-basis for computing

NFs).

The input is "not quite homogeneous"; several generators are homogeneous (deg=2), but some are 1+homog(deg=2).

I think my main point is to note this example as a test case for future improvements to the GBMill.

#6 - 06 Jun 2015 22:49 - John Abbott

For completeness here is the list of generators in QQ[x[1..6,1..6]]

[
-x[1,41*x[2,1]
-x[1,41*x[3,1]
-x[1,4]*x[4,1]
-x[1,41*x[5,1]
-x[1,41*x[6,1]
-x[2,4]1*x[3,1]
-x[2,4]1*x[4,1]
-x[2,41*x[5,1]
-x[2,4]1*x[6,1]
-x[3,4]1*x[4,1]
-x[3,41*x[5,1]
-x[3,4]1*x[6,1]
—x[4,41*x[5,1]
-x[4,41*x1[6,1]
-x[5,4]1*x[6,1]

-x[1,51*x[2,2]
-x[1,5]1*x[3,2]
-x[1,5]*x[4,2]
-x[1,5]1*x[5,2]
-x[1,5]1*x[6,2]
-x[2,5]1*x[3,2]
-x[2,5]1*x[4,2]
-x[2,5]1*x[5,2]
-x[2,5]*x[6,2]
-x[3,5]1*x[4,2]
-x[3,5]1*x[5,2]
-x[3,5]*x[6,2]
-x[4,5]1*x[5,2]
-x[4,5]1*x1[6,2]
-x[5,5]*x[6,2]

#7 - 07 Jun 2015 12:46 - John Abbott

In the specific example of this issue there are 36 indets (all used), 15 polynomials, and dim(P/I) gives 21. Isn't this enough to prove that there are no

redundant generators?

-x[1,6]1*x[2,3]
-x[1,6]*x[3,3]
-x[1,6]1*x[4,3]
-x[1,6]1*x[5,3]
-x[1,61*x[6, 3]
-x[2,6]*x[3,3]
-x[2,6]*x[4,3]
-x[2,6]*x[5,3]
-x[2,6]*x[6,3]
-x[3,6]*x[4,3]
-x[3,61*x[5, 3]
-x[3,6]1*x[6,3]
-x[4,6]1*x[5,3]
-x[4,6]*x[6,3]
-x[5,6]1*x[6,3]

If so, perhaps this could be added to MinimalSubsetOfGens?

+x[1,11*x[2,4]
+x[1,11*x[3,4]
+x[1,1]1*x[4,4]
+x[1,11*x[5,4]
+x[1,11*x[6,4]
+x[2,1]1*x[3,4]
+x[2,11*x[4,4]
+x[2,11*x[5,4]
+x[2,1]1*x[6,4]
+x[3,11*x[4,4]
+x[3,11*x[5,4]
+x[3,1]1*x[6,4]
+x[4,11*x[5,4]
+x[4,11*x1[6,4]
+x[5,1]1*x[6,4]

+x[1,2]1*x[2,5]
+x[1,21*x[3,5]
+x[1,2]1*x[4,5]
+x[1,2]*x[5,5]
+x[1,2]1*x[6,5]
+x[2,2]1*x[3,5]
+x[2,2]1*x[4,5]
+x[2,2]1*x[5,5]
+x[2,2]1*x[6,5]
+x[3,2]1*x[4,5]
+x[3,21*x[5,5]
+x[3,2]1*x[6,5]
+x[4,2]*x[5,5]
+x[4,2]1*x[6,5]
+x[5,2]1*x[6,5]

Note that it is important to know how many indets are actualy being used (see issue #658).

20 Apr 2024

+x[1,3]1*x[2,6],
+x[1,3]*x[3,6],
+x[1,3]1*x[4,6]
+x[1,3]1*x[5,6],
+x[1,3]*x[6,6],
wR[8y 3] w23, 6 5
+x[2,3]1*x[4,6],
+x[2,3]*x[5,6] -1,
+x[2,31*x[6,61,
+x[3,31*x[4,6],
+x[3,3]*x[5,6],
+x[3,31*x[6,6]
+x[4,3]1*x[5,6]1,
+x([4,3]*x[6,6],
+x[5,3]1*x[6,6]

=1,

=1,

3/4

https://cocoa.dima.unige.it/redmine/issues/658

#8 - 10 Jun 2015 14:24 - Anna Maria Bigatti
John Abbott wrote:

In the specific example of this issue there are 36 indets (all used), 15 polynomials, and dim(P/I) gives 21. Isn't this enough to prove that there
are no redundant generators?

yes

If so, perhaps this could be added to MinimalSubsetOfGens?

hmm, true

#9 - 10 Dec 2023 20:46 - John Abbott
- Related to Feature #1267: Ideal equality added

20 Apr 2024 4/4

http://www.tcpdf.org

