CoCoALib - Feature \#667
factor: multivariate + finite characteristic
02 Mar 2015 11:23-Anna Maria Bigatti

Status:	New	Start date:	02 Mar 2015	
Priority:	Normal	Due date:		
Assignee:		\% Done:	0\%	
Category:	New Function	Estimated time:	0.00 hour	
Target version:	CoCoALib-1.0	Spent time:	0.50 hour	
Description				
(if I remember well)				
The problem about factorizing a multivariate polynomial in finite characteristic was just the square free decomposition. Now that that step has been solved+implemented can we close the factor limitation?				
Related issues:				
Related to CoCoALib - Feature \#664: Impl small non-prime finite fields (using...			Resolved	11 Feb 2015

History

\#1-04 Mar 2015 13:31 - John Abbott
The squarefree decomposition is the normal first step, but there are other problematic steps (e.g. mapping down to univariate by substitution).
Here is an example: $\left(\left(x^{\wedge} 3-x\right)^{\star} y+1\right)^{\star}\left(\left(y^{\wedge} 3-y\right)^{\star} x+1\right)$ in FF_3 any substitution will make one of the factors collapse to 1 ; to avoid this one normally passes to an algebraic extension, factorizes there, and then recombines the factors to obtain the factorization in the smaller field.
[actually, my information may be outdated now]
Kaltofen mapped down to bivariate; I think he showed that this is "safe with high probability". The final step down to univariate remains a problem though, I think. I will have to reread the relevant articles.

\#2-04 Mar 2015 16:45-Anna Maria Bigatti

John Abbott wrote:
The squarefree decomposition is the normal first step, but there are other problematic steps (e.g. mapping down to univariate by substitution).
Here is an example: $\left(\left(x^{\wedge} 3-x\right)^{*} y+1\right)^{*}\left(\left(y^{\wedge} 3-y\right)^{*} x+1\right)$ in $F F _3$ any substitution will make one of the factors collapse to 1 ; to avoid this one normally passes to an algebraic extension, factorizes there, and then recombines the factors to obtain the factorization in the smaller field.
ah, ok. Far more difficult that I thought.

Problem 2: and how difficult is it to factorize on an algebraic extension? (supposing we have algebraic extensions ;-)

\#3-04 Mar 2015 20:08 - John Abbott

Factorizing in $F_{-} q[x]$ is largely the same as factorizing in $F _p[x]$; the algorithm is essentially the same (but coeff arithmetic is not, of course).
Werner asked for a decent impl of F_q, at least for small field sizes. I just have to find the time and energy to do it..

