CoCoALib - Feature #667

factor: multivariate + finite characteristic

02 Mar 2015 11:23 - Anna Maria Bigatti

Status:	New	Start date:	02 Mar 2015	
Priority:	Normal	Due date:		
Assignee:		% Done:	0%	
Category:	New Function	Estimated time:	0.00 hour	
Target version:	CoCoALib-1.0	Spent time:	0.50 hour	
Description				
•	actorizing a multivariate polynomial in fin as been solved+implemented can we clo		he square free decomposition.	
Related issues:				
Related to CoCoALib - Feature #664: Impl small non-prime finite fields (using		Resolved 11 Feb 2015		

History

#1 - 04 Mar 2015 13:31 - John Abbott

The squarefree decomposition is the normal first step, but there are other problematic steps (e.g. mapping down to univariate by substitution).

Here is an example: $((x^3-x)^*y+1)^*((y^3-y)^*x+1)$ in FF_3 any substitution will make one of the factors collapse to 1; to avoid this one normally passes to an algebraic extension, factorizes there, and then recombines the factors to obtain the factorization in the smaller field. [actually, my information may be outdated now]

Kaltofen mapped down to bivariate; I think he showed that this is "safe with high probability". The final step down to univariate remains a problem though, I think. I will have to reread the relevant articles.

#2 - 04 Mar 2015 16:45 - Anna Maria Bigatti

John Abbott wrote:

The squarefree decomposition is the normal first step, but there are other problematic steps (e.g. mapping down to univariate by substitution).

Here is an example: $((x^3-x)^*y+1)^*((y^3-y)^*x+1)$ in FF_3 any substitution will make one of the factors collapse to 1; to avoid this one normally passes to an algebraic extension, factorizes there, and then recombines the factors to obtain the factorization in the smaller field.

ah, ok. Far more difficult that I thought.

Problem 2: and how difficult is it to factorize on an algebraic extension? (supposing we have algebraic extensions ;-)

#3 - 04 Mar 2015 20:08 - John Abbott

Factorizing in $F_q[x]$ is largely the same as factorizing in $F_p[x]$; the algorithm is essentially the same (but coeff arithmetic is not, of course).

Werner asked for a decent impl of F_q, at least for small field sizes. I just have to find the time and energy to do it...