CoCoALib - Feature \#627
Gaussian integer and rationals ZZi, QQi
22 Sep 2014 18:15 - John Abbott

Status:	New	Start date:	22 Sep 2014	
Priority:	Normal	Due date:		
Assignee:		\% Done:	0\%	
Category:	New Function	Estimated time:	0.00 hour	
Target version:	CoCoALib-1.0	Spent time:	0.50 hour	
Description				
Ulrich would like to have an easy way to compute with (approximations to) complex numbers.				
Currently, it is possible to create $Q Q[i]$ and $Z Z[i]$ as quotients of polynomial extensions, but the procedure is cumbersome, and the resulting ring could be implemented more efficiently.				
Related issues:				
Related to CoCoALib - Feature \#628: Complex twin-floats			New	22 Sep 2014
Related to CoCoALib - Feature \#520: Compute inverse in quotient ring (i.e. di...			Closed	04 Apr 2014
Related to CoCoA-5-Feature \#993: New function: RingQQi()? extension of QQ ...			In Progress	14 Dec 2016

History

\#1-23 Sep 2014 11:40-John Abbott
What should be the internal representation of an element of $Q Q[i]$?

1. a pair of BigRat values (real and imag parts)
2. a triple of Biglnt values (real, imag and common denom)
3. a 4-tuple of Bigint values (real \& imag of numerator, real \& imag of denominator)

Representation (3) is unnormalized, i.e. the same value has many different representations; division is very simple; addition and multiplication are more costly than in repr (2).

Repr (2) is the most "specialized"; I would expect it to be faster at run-time than the other two reprs.
Repr (1) is perhaps the most natural, but having two separate denominators is likely to be a disadvantage at run-time (more memory space, and slower computation than repr (1))

\#2-23 Sep 2014 16:30 - John Abbott

Recalling that every ring (except RingZZ) in CoCoALib has a BaseRing and an "extension type". What should the BaseRing and "extension type" of QQ[i] be?

Ideally it should behave as if it were a quotient of a polynomial extension. But if we do this then it must be possible to obtain a "representative" being a univariate polynomial in the polynomial ring QQ[i].

Perhaps there should be a special "simple algebraic extension" type whose BaseRing is the coeff ring, and the intermediate polynomial ring is not accessible?
\#3-14 Dec 2016 15:47 - John Abbott

- Related to Feature \#993: New function: RingQQi()? extension of $Q Q$ with imaginary unit added

