
CoCoALib - Bug #591

Problem with template instantiation and order of include directives

16 Jul 2014 14:05 - John Abbott

Status: In Progress Start date: 16 Jul 2014

Priority: Low Due date:  

Assignee:  % Done: 50%

Category: Portability Estimated time: 5.00 hours

Target version: CoCoALib-1.0 Spent time: 5.20 hours

Description

Some versions of g++ (v4.3.2, v4.4.7, v4.6.3) and intel C++ compiler gave errors when compiling ex-UtilsVector1.C if, in the file

degree.H, the #include directive for UtilsVector.H was placed before the other #include directives.  The error produced indicated that

some prototypes for cmp were not visible (in ptic for two @MachineInt@s).

We have no idea why, but since several compilers complain we wonder whether it isn't a strange limitation of C++.

Logging the problem here.  The solution is just to move the #include directive in degree.H to after the other two.

Related issues:

Related to CoCoALib - Bug #264: Compilation problem with "degree.H" (inline f... Closed 12 Oct 2012

History

#1 - 16 Jul 2014 14:07 - John Abbott

- % Done changed from 0 to 10

JAA failed to find anything helpful on the internet.

I'm just hoping that the solution of moving the #include will be sufficient for the foreseeable future.

#2 - 16 Jul 2014 14:14 - John Abbott

Clang 3.0 on my computer gives no error.

#3 - 09 Jan 2017 16:56 - John Abbott

- Description updated

The problem persists with g++ 5.3.1.  It must be C++ thing, some weird restriction about calling "global" fns from inside template code.

#4 - 10 Jan 2017 11:12 - John Abbott

- Status changed from New to In Progress

It really is a C++ trap for the unwary... grrr!

The following code fails to compile because the last line (iter(vs);) needs the second defn of func, but that is not visible at the point where the template

fn was defined.  I'm at a loss for words -- why does C++ have this "feature"???

#include <iostream>

#include <vector>

#include <string>

using namespace std;

void func(int n)

{

  cout << "int ";

25 Apr 2024 1/3



}

template <typename T>

void iter(const std::vector<T>& v)

{

  const int n = v.size();

  for (int i=0; i < n; ++i)

    func(v[i]);

  cout << endl;

}

void func(const std::string& str)

{

  cout << "str ";

}

int main()

{

  vector<int> vi; vi.push_back(1);

  vector<string> vs; vs.push_back("abc");

  iter(vi);

  iter(vs);

}

#5 - 10 Jan 2017 11:20 - John Abbott

There remains the question of how to correctly organize the header files in CoCoALib so that this "wonderful feature" of C++ does not cause too much

grief.

#6 - 11 Jan 2017 15:02 - John Abbott

Mario and I looked in Stroustrup's C++ book (v.4), and the magic phrase appears to be point-of-instantiation binding (sec. 26.3.3).

The matter is discussed on the following thread:

http://stackoverflow.com/questions/30514337/point-of-instantiation-and-name-binding

In summary, the point-of-instantiation binding apparently does not work for built-in C++ types; instead the point-of-definition binding is used. 

Grrr!

What I still do not know is how best to organize the few templates in CoCoALib header files to avoid future pain from these arcane C++ rules.  Ideas

are welcome!

25 Apr 2024 2/3



#7 - 12 Mar 2020 14:39 - John Abbott

- Target version changed from CoCoALib-1.0 to CoCoALib-0.99850

- % Done changed from 10 to 50

What should we do with this issue?   The correct "solution" is for us to learn the foibles of C++.

It does highlight an important, awkward point of C++.  We do not use templates that much, but I suppose it will sooner or later cause us grief again.

In practice... should we just close/reject this issue?

#8 - 09 Feb 2024 10:18 - John Abbott

- Target version changed from CoCoALib-0.99850 to CoCoALib-1.0

Powered by TCPDF (www.tcpdf.org)

25 Apr 2024 3/3

http://www.tcpdf.org

