
CoCoA-5 - Feature #504

New operators: += -= *= /=

02 Apr 2014 01:13 - John Abbott

Status: In Progress Start date: 02 Apr 2014

Priority: Normal Due date:

Assignee: John Abbott % Done: 20%

Category: CoCoA-5 function: new Estimated time: 0.00 hour

Target version: CoCoA-5.?.? Spent time: 1.60 hour

Description

Now that I've implemented new fns incr and decr, I wonder whether it wouldn't have been more sensible to implement instead new

operators +=, -=, *= and /= with the same semantics as in C++. They'd certainly be more useful than incr and decr (e.g. creating a

new polynomial by summing to it one term at a time, though it'd be better to use a "geobucket" for that).

For someone who knows neither, would it be harder to learn incr(ref counter); or counter += 1;? There is a slight difference: incr

expects counter to contain an integer, but += should not impose any such limitation.

Would it make sense to add these operators? Or perhaps just some of them?

[since they're new operators, we'd have to change the parser/interpreter, but JAA does not think that would be too hard]

Related issues:

Related to CoCoA-5 - Design #364: Incr command/function Closed 03 Jun 2013

Related to CoCoA-5 - Feature #518: incr/decr functions: to be used in packages Closed 03 Apr 2014

History

#1 - 02 Apr 2014 08:02 - Anna Maria Bigatti

- Target version set to CoCoA-5.1.0 Easter14

- % Done changed from 0 to 10

I think += is a big step over incr. After all how often we have for loops with step different from one?

I agree it would be nice, but just for a small elite.

#2 - 02 Apr 2014 11:39 - Christof Soeger

I like the += syntax very much, so I would vote for it.

For the incr, why not also ++?

#3 - 02 Apr 2014 12:15 - John Abbott

- Status changed from New to In Progress

We could also have the ++ operator but cannot have -- because that is used to mark end-of-line comments. In my opinion/experience, incrementing

is a far more common operation than decrementing. However, a C++ programmer who wants to use CoCoA would probably be surprised if ++ works

but -- does not.

Here are four potential code samples:

(A) ++counter;

(B) counter += 1;

(C) incr counter;

(D) incr(ref counter);

(E) counter := counter+1;

We can already do (D) and (E); I almost prefer (E) to (D) -- oops!

After any years of C/C++ programming I find (A) clear and concise, but could imagine someone without C/C++ experience could find it too

terse/opaque. I do feel that (B) is a reasonable compromise.

23 Apr 2024 1/3

#4 - 02 Apr 2014 12:21 - John Abbott

Would we really want all 4 operators +=, -=, *= and /=?

Probably /= would be used only rarely, but if we have the other 3 then for symmetry we should also have /=.

I have deliberately omitted %=. CoCoA-4 did have a % operator, but it is not defined in CoCoA-5 (as it is not needed) -- the interpreter recognises it

but says that it is not (yet) defined. If ever % is defined, we can then consider adding %=.

#5 - 02 Apr 2014 13:37 - Christof Soeger

From the existing alternatives I also prefer (E) since it is clearly understandable. If you cannot have -- you should also not have ++, it is just to

confusing and inconsistent. Having i += 1; is good enough.

I think you should have all 4 operators.

#6 - 02 Apr 2014 14:21 - Anna Maria Bigatti

Christof Soeger wrote:

If you cannot have -- you should also not have ++, it is just to confusing and inconsistent.

I agree with that: no (A)

I'm against (C) as well: I do not like commands, I prefer functions/procedures, so I quite like (D).

I'm mildly against (B) += in CoCoA-5 (while I like it a lot in C++)

#7 - 09 Apr 2014 17:43 - John Abbott

- Target version changed from CoCoA-5.1.0 Easter14 to CoCoA-5.1.1 Seoul14

#8 - 27 Aug 2014 18:10 - Anna Maria Bigatti

- Target version changed from CoCoA-5.1.1 Seoul14 to CoCoA-5.?.?

#9 - 25 Oct 2019 11:46 - John Abbott

- Assignee set to John Abbott

- % Done changed from 10 to 20

One big advantage of rejecting the idea of introducing += and friends is that there would be no need to fiddle around inside the interpreter... to my

mind the code is not as self-documenting at the original author believes :-/

Earlier comments have effectively voted against (A) and (C); we already have (D) and (E). So the only point to resolve is (B). Christof was in favour

(comment 2), Anna was against (comment 6).

The advantage of += and friends is that they are well-appreciated by C/C++ programmers.

23 Apr 2024 2/3

A disadvantage is that people who do not know C/C++ might find them cryptic. Another point is that in CoCoA-5 they would probably not be

especially efficient -- somehow in C++ they "feel like" they ought to be particularly efficient. Anyway, the aim of CoCoA-5 is not to be especially

efficient (but also not to be needlessly inefficient).

It seems reasonable to assume that A += B; would mean exactly the same as A := A+B (with the exception that A is evaluated only once). This

could lead to some mildly surprising uses: let R be a ring and I and ideal in R, then R /= I would mean R := R/I. Of course, no one is compelled to

write such a command.

NOTE in the CoCoA-5 packages incr is used in about 35 places (currently). Not sure if I can find out how often we use something like A := A + B;

#10 - 25 Oct 2019 11:55 - John Abbott

Here is a command for finding lines which contain commands like A := A + blah or some other operator -- it does find some other stuff as well (and

does not find things like L[k] := L[k] + sthg)

egrep "(\<\w*\>) *:= *\<\1\>" *.cpkg5

With the current (2019-10-25) versions of the packages there are about 160 instances.

There are about 10 cases of the form A := A+1 which could be replaced immediately by incr(ref A).

I noted about 35 cases where I might be tempted to op= instead of A := A op B

Powered by TCPDF (www.tcpdf.org)

23 Apr 2024 3/3

http://www.tcpdf.org

