CoCoALib - Design \#377

IsDivisible -- exact semantics?
19 Jun 2013 10:28 - John Abbott

Status:	Closed	Start date:	19 Jun 2013
Priority:	Normal	Due date:	
Assignee:	John Abbott	\% Done:	100%
Category:	Maths Bugs	Estimated time:	3.00 hours
Target version:	CoCoALib-0.99533 Easter14	Spent time:	3.00 hours

Description

While dealing with issue \#248 I realised that the exact semantics of IsDivisible are not clear.
The problem is when the ring contains zero-divisors.
Guideline: IsDivisible(a,b) gives true iff a/b will succeed
Let zd be a (non-zero) zero-divisor; let nzd be a non-zero-divisor:

- it is clear that IsDivisible $(0, \mathrm{nzd})$ should produce true
- what should IsDivisible(0,zero(R)) produce?
- what should IsDivisible $(0, z d)$ produce?
- what should IsDivisible(2*zd,zd) produce?

For concreteness, you can take the ring $R=\operatorname{NewZZmod(6)~and~} z d=2$ and $n z d=5$
Comments?

Related issues:

Related to CoCoALib - Feature \#248: IsDivisible for RingElem with nice interface	Closed	01 Oct 2012
Related to CoCoALib - Design \#1500: IsDivisible in a field?	Closed	05 Oct 2020

History

\#1-19 Jun 2013 10:57 - John Abbott

- Status changed from New to In Progress
- Assignee set to John Abbott

The problem with dividing $4 / 2$ in $Z Z / 6$ is that the true answer is 2 in $Z Z / 3$-- a different ring! The answer could be either 2 or 5 in $Z Z / 6$.
(A) So we could say that 4 is divisible by 2 , but when we perform the division we must choose one answer among many
(B) Or we could say that 4 is not divisible by 2 because the answer is not unique in that ring.

Consequences:

(C) If we adopt approach (A) then presumably we must also say that 0 is divisible by 0 ; but that implies that one can compute $0 / 0$ and expect to get an answer...
(D) If we adopt approach (B) then IsDivisible $(0, \mathrm{zd})$ should always give false (because the answer is not unique: it could be 0 or any cofactor of $z d$).

At the moment I favour approach (B).

\#2-20 Jun 2013 14:46 - John Abbott

- \% Done changed from 0 to 10

JAA continues to believe that attempting to compute $0 / 0$ in any ring should give an error. Giving an answer is almost surely going to lead to a nasty surprise sooner or later.

This reinforces my preference for design decision (B).

\#3-29 Oct 2013 14:59-Anna Maria Bigatti

- Target version changed from CoCoALib-0.99534 Seoul14 to CoCoALib-0.99532

\#4-01 Apr 2014 17:29-Anna Maria Bigatti

- Target version changed from CoCoALib-0.99532 to CoCoALib-0.99533 Easter14

\#5-04 Apr 2014 00:31 - John Abbott

- \% Done changed from 10 to 30

Summarising:

IsDivisible (a, b) gives true iff there is a unique c in the ring satisfying $a=b * c$ (assuming ring is commutative). This implies that a / b is well-defined (and so ought to be computable).

As Anna said: this fits in well with CoCoA's "pragmatic philosphy".
Nevertheless the documentation should point out the pecularities of IsDivisible in CoCoA.
Note that IsDivisible throws ERR::DivByZero if $b=0$; we chose this behaviour because we think that testing for divisibility by 0 is more likely a consequence of a programming error than an intended test.

Note that IsDivisible apparently always gives false if the 2 nd arg is a non-zero zero-divisor (agreeing with condition that the quotient be unique).
Action: check \& correct documentation, check \& correct implementations!

\#6-08 Apr 2014 16:20 - John Abbott

- \% Done changed from 30 to 50

Aldo says that " a is divisible by b " means that there exists at least one c such that $a=b * c$. He accepted happily that this means that 0 is divisible by 0 ; this is, of course, quite unacceptable for CoCoA (because $0 / 0$ will cause an error; it'd be too "dangerous" to give a result).

After some discussion the proposal is:

- if b is a zero-divisor then give error (ERR::DivByZero)
- otherwise return true or false appropriately

I observe that in comment- 5 we had proposed error for $b=0$ but not for other zero-divisors; this is somewhat inconsistent! The proposal in this comment is more consistent.
\#7-08 Apr 2014 17:59- John Abbott

- Status changed from In Progress to Feedback
- \% Done changed from 50 to 90

Implemented the proposal in comment-6; changed several IsZero checks into IsZeroDivisor.
Changed state to feedback
\#8-15 Apr 2014 15:50 - John Abbott

- Status changed from Feedback to Closed
- \% Done changed from 90 to 100

\#9-17 Apr 2014 09:21-Anna Maria Bigatti

- Estimated time set to 3.00 h

\#10-05 Oct 2020 14:33-John Abbott

- Related to Design \#1500: IsDivisible in a field? added

