
CoCoALib - Feature #261

Review the utility of RefRingElem

10 Oct 2012 10:33 - John Abbott

Status: Closed Start date: 10 Oct 2012

Priority: High Due date:

Assignee: John Abbott % Done: 100%

Category: Safety Estimated time: 0.00 hour

Target version: CoCoALib-0.9952 Spent time: 31.50 hours

Description

From studying issue #221 it has become apparent that the role of RefRingElem needs urgent review.

Related issues:

Related to CoCoALib - Feature #221: Better RingElems Closed 08 Aug 2012

History

#1 - 10 Oct 2012 10:36 - John Abbott

JAA is currently assessing how useful/necessary RefRingElem is; the hope is that they can simply be eliminated (along with the associated difficulties

-- see #221).

#2 - 10 Oct 2012 12:07 - John Abbott

I am considering eliminating the type RefRingElem. To do this I must find out where the type is used.

The type RefRingElem appears in many function signatures because the guidelines were to use it whenever a modifiable "ring elem" was to be

passed; the understanding being that a true RingElem is automatically converted to RefRingElem by C++ automatically passing to a base class. If

the class RefRingElem is eliminated then all these formal parameters would naturally be replaced by ones of type RingElem&.

The crucial question is where are true RefRingElem objects created?

And in each case can a reasonable alternative implementation be found?

The only places I have found where RefRingElem values are created are:

A ModuleElem::operator[] for non-const values; also the myCompt member fn

B <matrix>::myRefEntry

C RefLC for DistrMPolyClean and DistrMPolyInlPP

D RingWeyl::myMulByPP and RingWeyl::myReductionStep

Case A is probably a mistake in design; it is not used anywhere in CoCoALib/CoCoA-5, so can easily be eliminated (and probably replaced by a

SetEntry procedure as for matrices).

Case B the result of myRefEntry is used only inside BlockMatrix::mySetEntry and ConcatVerImpl::mySetEntry; a member fn similar to myRefEntry is

fairly essential, but it could return simply a RingElemRawPtr. Overall: it would not be too problematic to eliminate use of RefRingElem in this case.

Case C the result of RefLC is used in just two places, and in fact only the RingElemRawPtr is used. It would be easy to redefine RefLC to produce a

RingElemRawPtr.

Case D the two uses of RefRingElem can be eliminated, but will lead to a slight uglification of the code.

27 Apr 2024 1/3

https://cocoa.dima.unige.it/redmine/issues/221
https://cocoa.dima.unige.it/redmine/issues/221

#3 - 10 Oct 2012 15:51 - John Abbott

I have modified the source code in the 4 areas indicated in my previous post. It all compiles and the tests pass.

Case A: I simply commented out the code; no further changes were needed as the troublesome functions were never called anywhere.

Case B: I replaced all myRefEntry mem fns with myRawEntry; the only uses are in some mySetEntry mem fns, and I'm undecided whether the

modified code is better or worse than before -- it is slightly harder to read, but also more explicit.

Case C: I replaced RefLC with RawLC which gives a raw ptr to the LC -- an ugly workaround. I'm hoping to find a cleaner solution.

Case D: the fn RingWeylImpl::myMulByPP is no better or worse than before; RingWeylImpl::myReductionStep is a little less readable than before

(but still just about acceptable).

#4 - 11 Oct 2012 16:12 - John Abbott

I have implemented a reasonably clean solution to case C; it is exception safe but does make a "wasteful copy".

I have commented out the class RefRingElem and replaced it with a typedef for RingElem&. There were a few further manual changes too.

Everything compiles, and the tests all pass. Some dodgy code was highlighted by the compiler -- this shows that the 3 layer hierarchy

ConstRefRingElem to RefRingElem to RingElem was in fact flawed!

Next step is to text-replace RefRingElem with RingElem& (and hope that everything still compiles afterwards).

#5 - 11 Oct 2012 18:34 - John Abbott

- % Done changed from 0 to 50

I have replaced all occurrences of RefRingElem (usually by RingElem&),

and made a few scattered minor changes so that everything compiles.

I'll do the CVS check in tomorrow -- it's too late, and I'm too tired to do it safely now.

The documentation will need to be updated too!

#6 - 15 Oct 2012 14:54 - John Abbott

- % Done changed from 50 to 60

CVS check-in blocked until new release of CoCoALib has been made.

I'll look at the documentation in the meantime.

#7 - 17 Oct 2012 20:10 - John Abbott

- % Done changed from 60 to 70

27 Apr 2024 2/3

Checking in completed.

Documentation has still to be updated.

#8 - 24 Oct 2012 16:32 - John Abbott

- % Done changed from 70 to 80

I have renamed the class ConstRefRingelem into RingElemAlias, and introduced a new typedef for ConstRefRingElem. There were many

consequential changes. It compiles and all tests pass, so I have checked in.

The documentation still needs to be updated.

#9 - 24 Oct 2012 16:56 - Anna Maria Bigatti

confirm: all compiles and runs smoothly :-)

#10 - 26 Oct 2012 17:13 - John Abbott

- Status changed from In Progress to Resolved

- % Done changed from 80 to 100

I have updated the doc for RingElem and friends.

It probably needs some more work, but I'm taking a rest over the weekend.

#11 - 18 Feb 2013 12:50 - John Abbott

- Status changed from Resolved to Closed

Since no problems have surfaced in 4 months, I regard this matter as fully resolved, so I am closing it.

Powered by TCPDF (www.tcpdf.org)

27 Apr 2024 3/3

http://www.tcpdf.org

