
CoCoALib - Design #1783

Code & doc structure: one-big-file or many-small-files?

24 Feb 2024 18:32 - John Abbott

Status: In Progress Start date: 24 Feb 2024

Priority: Normal Due date:

Assignee: % Done: 10%

Category: Tidying Estimated time: 0.00 hour

Target version: CoCoALib-0.99900 Spent time: 0.60 hour

Description

I'd like to discuss briefly the pros & cons of many-small-files and one-big-file. Currently the CoCoALib code is a mixture:

NumTheory.H is one-big-file (but the impl files are several)

SparsePolyOp-XXX is many-small-files (both headers & impls)

Can we establish guidelines/recommendations (for code & for doc)?

Related issues:

Related to CoCoALib - Support #1672: Documentation: a good model to follow? New 15 Mar 2022

Related to CoCoALib - Support #1510: Documentation for SparsePolyOps? New 14 Oct 2020

Related to CoCoALib - Support #1265: Unregistered TXT files in doc Closed 27 Mar 2019

History

#1 - 24 Feb 2024 18:33 - John Abbott

- Status changed from New to In Progress

- % Done changed from 0 to 10

Thoughts about one-big-file vs many-small-files:

For source code:

ASSUME many-small-files means many header files & many impl files -- could in principle have few header files and many impl files

compilation of many-small-files is likely easier on a computer with little RAM

compilation of many-small-files may be faster on a computer with many cores

recompilation after adding a new function is likely faster with many-small-files

changing an existing API (fn-name, or arg-list, or rtn-value) may involve editing many more files with many-small-files -- I would not expect much

difference in recompilation time

with many-small-files it may not be obvious where the impl is to be found (or where a new impl should be placed, e.g. if it operates on 2 objets of

different type)

with many-small-files the impl files will need to have more include directives (and it may take some effort to discover exactly which header files

should be included)

It is not clear to me that the convention of structuring the header files

and impl files the same way is really a good idea; it is a natural idea,

and is quite possibly helpful for the developers. There is a connection

between fine-grained header files and "minimal recompilation" -- this surely

saves time for the developers.

For documentation:

CONVENTION: we have typically had a 1--1 relationship between header files and doc files (no doubt with some exceptions)

with many-small-files each doc file is shorter, and thus likely easier to digest -- though a well-structured big file might be just as easy

with many-small-files it may not be obvious in which doc file to look for doc about a specific fn -- this could be resolved by having a good search

mechanism (JAA thinks the CoCoA-5 manual works pretty well)

with many-small-files there is possibly more need for xrefs (??)

It is not clear to me that the CONVENTION of structuring the doc files

the same way we do for the header/source files is really a good

convention. The convention is probably helpful for developers, but a

normal user probably does not care

27 Apr 2024 1/2

#2 - 24 Feb 2024 18:34 - John Abbott

A brief phone discussion with Anna yesterday suggested a vague preference for many-small-files.

But no genuine reasons for the preference were stated.

#3 - 01 Mar 2024 09:36 - Anna Maria Bigatti

- Related to Support #1672: Documentation: a good model to follow? added

#4 - 01 Mar 2024 09:36 - Anna Maria Bigatti

- Related to Support #1510: Documentation for SparsePolyOps? added

#5 - 01 Mar 2024 09:37 - Anna Maria Bigatti

- Related to Support #1265: Unregistered TXT files in doc added

Powered by TCPDF (www.tcpdf.org)

27 Apr 2024 2/2

http://www.tcpdf.org

