CoCoALib - Bug \#1710

IsSqFree, Islrred bugs in ZZ[x] and QQ[x]

16 Nov 2022 09:33 - John Abbott

Status:	Closed	Start date:	16 Nov	
Priority:	Urgent	Due date:		
Assignee:	John Abbott	\% Done:	100\%	
Category:	Maths Bugs	Estimated time:	3.90 ho	
Target version:	CoCoALib-0.99850	Spent time:	3.85 ho	
Description				
Nico Mexis repor	email:			
$\begin{aligned} & \text { use } \mathrm{ZZ}[\mathrm{x}] ; \\ & \mathrm{f}:=-10{ }^{*} \mathrm{x}^{\wedge} 2 \\ & \text { println [IsSo } \\ & \text { /**/ [false, } \end{aligned}$	$-20 ;$ f), gcd(f, deri			
$\begin{aligned} & \text { use } Q Q[x] ; \\ & f \text { : }=-10{ }^{*} x^{\wedge} 2 \\ & \text { println [IsSo } \\ & / * * /[t r u e, ~] \end{aligned}$	$-20 ;$ f), gcd(f, deri			
As far as I can tell However, I do no Also, the same a It seems rather odd	uld suffice to replace which side effects th o IsIrred (and most lik Islrred on $-10^{*} x^{\wedge} 2-20$	PolyRing.C (lines is completely bog ons). QQ[x], but true in	97) by	stant calls.
Related issues: Related to CoCoAL	ture \#1108: New fn: IsC	makes se...	Closed	17 Oct 2017

History

\#1-16 Nov 2022 16:29-John Abbott

- \% Done changed from 0 to 10

Nico also send the following by email:

```
use ZZ[x];
gcd(10, 10*x);
/**/ 10
use QQ[x];
gcd(10, 10*x);
/**/ 1
```

Returning 10 is a reasonable thing to do in $Z Z[x]$, but then it should be the same in $Q Q[x]$, I think.
However, this obviously affects IsCoprime since it checks if the gcd is invertible (if I remember correctly).

\#2-16 Nov 2022 16:34 - John Abbott

- Status changed from New to In Progress

In response to note-1:
Without doubt, in $Z Z[x]$ we must have $\operatorname{gcd}\left(10,10^{*} x\right)=10$; conceivably it could also be -10 , but JAA prefers a positive LC.

In QQ[x] the result is defined only up to an invertible factor (same as in $Z Z[x]$, but the only invertibles there are 1 and -1). JAA would find it surprising if, in the ring $Q Q[x]$, the computation $\operatorname{gcd}\left(10,10^{*} x\right)$ gave any value other than 1 .

\#3-16 Nov 2022 16:56-John Abbott

Here are some simple test cases:

```
use ZZ[x];
f := 2*x+2;
IsSqFree(f); // expect true
IsIrred(f); // expect true (if we ignore non-invertible coeffs)
```

2022-11-16: both tests produce false

Must also clarify doc!

\#4-16 Nov 2022 17:00-John Abbott

- \% Done changed from 10 to 20

Here is a test case where I am unsure what the correct result should be:

```
use ZZ[x];
f := - (2*x+2);
factor(f);
--> record[RemainingFactor := -2, factors := [x +1], multiplicities := [1]]
SqFreeFactor(f);
--> record[RemainingFactor := 2, factors := [-x -1], multiplicities := [1]]
```

Right now I have a preference for making leading coeffs positive (in this case).
What do you think?

\#5-16 Nov 2022 17:24 - John Abbott

- Status changed from In Progress to Resolved
- \% Done changed from 20 to 80

I have modified the source code (following Nico's suggestions, more or less)
I have added a caution to the doc. I have added a new exbug test for CoCoALib.
Will check in shortly!

\#6-17 Nov 2022 06:50 - John Abbott

Since IsCoprime can behave "unexpectedly" in ZZ[x]...
Should we limit the applicability of IsCoprime?

For example, it could give an error if the ring is not ZZ or a polynomial ring over a field..

Removing IsCoprime completely seems too drastic.

\#7-23 Nov 2022 18:25-John Abbott

Anna will think about this.

\#8-30 Nov 2022 19:21-Anna Maria Bigatti

John Abbott wrote:
Since IsCoprime can behave "unexpectedly" in ZZ[x]...
Should we limit the applicability of IsCoprime?

I think that it is right to give an error because it might be ambiguous: IsCoprime($\left.2^{*} x, 2^{*}(x-1)\right)$. In the manual we could suggest to run either IsConstant $\left(\operatorname{gcd}\left(2^{*} x, 2^{*}(x-1)\right)\right)$; or IsInvertible(gcd(2*x, $\left.\left.2^{*}(x-1)\right)\right)$;

\#9-30 Nov 2022 21:33-John Abbott

- Related to Feature \#1108: New fn: IsCoprime (whenever gcd makes sense) added

\#10-14 Dec 2022 21:05-John Abbott

- Status changed from Resolved to Feedback
- \% Done changed from 80 to 90

I have added a new "exbug" test. I have updated the code in CoCoALibSupplement.C.
I have revised the CoCoA-5 manual.
One small doubt: as it currently stands one can do IsCoprime(M, N) if M and N are elements of the ring $Z Z$, but it does not work if they are of type INT. There are two obvious ways to solve this inconsistency:

- disable IsCoprime for the ring ZZ
- enable IsCoprime for INT values

What do you think?
PS for integers we can always do $\operatorname{gcd}(M, N)=1$
PPS CoCoALib does have IsCoprime for Biglnt... that probably dictates the answer here!

\#11-15 Dec 2022 09:15 - Nico Mexis

If all else fails, the issue in CoCoA 5 could be fixed in the same manner as factor by providing an extra IsCoprimeINT function. However, I would agree that this is not an optimal solution.

12-06 Mar 2023 22:41 - John Abbott

I have now extended IsCoprime so that it covers integers and ring elems, and a mixture of the two.
Added tests, and doc.
Will check in shortly.
\#13-07 Mar 2023 20:55-John Abbott

- Status changed from Feedback to Closed
- \% Done changed from 90 to 100
- Estimated time set to 3.90 h

