
CoCoALib - Slug #1646

radical: could be more clever

17 Jan 2022 12:07 - John Abbott

Status: Closed Start date: 17 Jan 2022

Priority: Normal Due date:

Assignee: John Abbott % Done: 100%

Category: Maths Bugs Estimated time: 1.33 hour

Target version: CoCoALib-0.99800 Spent time: 1.30 hour

Description

Who would have predicted the following behaviour?

/**/ radical(ideal(x^2,x-1,y^2));

ideal(x^2, x -1, y^2)

It is not wrong, but could be more helpful

Related issues:

Related to CoCoALib - Design #1647: Suppress zero from ideal generators? Det... Closed 20 Jan 2022

Related to CoCoALib - Bug #1779: Radical error with lex (again) Closed 05 Feb 2024

Related to CoCoALib - Feature #1780: radical for ideals in SparsePolyRing: c... Closed 06 Feb 2024

History

#1 - 17 Jan 2022 13:48 - John Abbott

- Category set to Maths Bugs

- Target version set to CoCoALib-0.99800

Bug originally reported by Florian Walsh. Also:

use QQ[x,y];

radical(ideal(x^2,x-x,y^2)); --> error about 0 poly?!?

#2 - 20 Jan 2022 19:14 - John Abbott

- Status changed from New to In Progress

- % Done changed from 0 to 10

The source code for radical is still in package radical.ckpg5.

If the ideal is 0-dim then the C++ function radical_tmp is called.

This is defined in SparsePolyOps-ideal.C near line 1010.

If the ideal is 0-dim then the work is done by radical_0dim which is

defined in the same file around line 980. This in turn delegates to

radical_0dimDRL if the ideal already has a GBasis, or else a copy is

made in ring with DegRevLex before delegating.

The actual work is then done by a member function (?!?) called

myRadical_dimDRL with a comment that the mem fn "behaves differently".

28 Apr 2024 1/2

Oha!

Now the source is in SparsePolyOps-ideal-ZeroDim.C around line 340.

#3 - 20 Jan 2022 19:31 - John Abbott

- Status changed from In Progress to Resolved

- Assignee set to John Abbott

- % Done changed from 10 to 70

The problem was that myGBasisByHomog tried to homogenize all generators without checking whether they are zero.

I have added a simple check, and now it seems to work as hoped/desired.

I do wonder whether whether ideals should automatically suppress zeroes from the list of generators.

This should probably be a new issue -- see issue #1647.

#4 - 20 Jan 2022 19:35 - John Abbott

- Related to Design #1647: Suppress zero from ideal generators? Detect 1 and simplify generators? added

#5 - 20 Jan 2022 20:28 - John Abbott

- % Done changed from 70 to 80

I have checked in my changes (and asked Anna to check them).

I have added tests (CoCoA-5 exbugs... currently radical is not really available from CoCoALib).

#6 - 21 Jan 2022 10:38 - John Abbott

- Status changed from Resolved to Closed

- % Done changed from 80 to 100

- Estimated time set to 1.33 h

#7 - 24 Jan 2022 09:07 - Anna Maria Bigatti

I think that, along the same line -- actually in the previous line ;-)

we should change

/**/ radical(ideal(zero(CurrentRing), zero(CurrentRing)));

ideal(0, 0)

#8 - 05 Feb 2024 19:00 - Anna Maria Bigatti

- Related to Bug #1779: Radical error with lex (again) added

#9 - 06 Feb 2024 09:03 - Anna Maria Bigatti

- Related to Feature #1780: radical for ideals in SparsePolyRing: code in C++ added

Powered by TCPDF (www.tcpdf.org)

28 Apr 2024 2/2

https://cocoa.dima.unige.it/redmine/issues/1647
http://www.tcpdf.org

