
CoCoALib - Bug #1641

gcd does not recognize univariate input

20 Dec 2021 13:43 - John Abbott

Status: Closed Start date: 20 Dec 2021

Priority: High Due date:

Assignee: John Abbott % Done: 100%

Category: Improving Estimated time: 5.33 hours

Target version: CoCoALib-0.99850 Spent time: 5.35 hours

Description

Determinants where you would not expect them!

/**/ SetVerbosityLevel(100);

/**/ use ZZ/(19)[x,y[1..100]];

/**/ f1 := x^4 -x^2 +7*x -7;

/**/ f2 := x^4 +4*x^3 -6*x^2 -6*x +7;

/**/ gcd(f1,f2);

As soon as there is more than 1 indet in the ring CoCoA "stupidly" uses the syzygy method to compute the gcd even if the input polys

are univariate!

Improve!

Related issues:

Related to CoCoALib - Feature #1197: IsZeroDet: new fn In Progress 26 Jun 2018

Related to CoCoALib - Design #1649: Add file SparsePolyOps-vector.C Closed 21 Jan 2022

Related to CoCoALib - Slug #1057: Slug: Polynomial ring contructor slow with ... In Progress 04 May 2017

Related to CoCoA-5 - Slug #1068: PolyRing constructor: NewOrdvArith computed ... In Progress 17 May 2017

Related to CoCoALib - Design #1798: Computing in sub polyring New 22 Mar 2024

History

#1 - 04 Jan 2022 11:18 - John Abbott

- Status changed from New to In Progress

- % Done changed from 0 to 10

I have modified the code to detect univariate inputs and to handle them "cleverly". The result is noticeably faster!

Now to see what it does with inputs like gcd(x*y[1], (x+1)*y[2]) which obviously involves only x and neither of y[1] and y[2].

NOTE: my sudoku program now takes about 3s for one example where previously it took about 40s!

#2 - 07 Jan 2022 20:23 - John Abbott

- Assignee set to John Abbott

- % Done changed from 10 to 20

I have checked in my first change (so that Anna can experiment with it).

There is more to come (if/when I find time).

28 Apr 2024 1/4

#3 - 21 Jan 2022 12:36 - John Abbott

- Related to Feature #1197: IsZeroDet: new fn added

#4 - 21 Jan 2022 13:07 - Anna Maria Bigatti

- Related to Design #1649: Add file SparsePolyOps-vector.C added

#5 - 16 Mar 2024 21:44 - John Abbott

- Priority changed from Normal to High

This may well be length to resolve properly, but I really should look at it soon.

#6 - 19 Mar 2024 20:18 - John Abbott

The problem code is in SparsePolyOps-RingElem.C around line 718 (search for SyzOfGens or maybe just syz).

I think I need a combination of ContentWRT and maybe ContentFreeFactor. Time to look these up in the CoCoALib doc - I do hope I actually wrote

some doc for those two fns!

#7 - 19 Mar 2024 22:10 - John Abbott

- % Done changed from 20 to 30

Made some progress. This is more tedious than I thought... the doc for CoCoALib could be better... (and the design too)

#8 - 20 Mar 2024 22:03 - John Abbott

- Status changed from In Progress to Resolved

- % Done changed from 30 to 70

The new code seems to work now, and is faster if the polys are recognized as univariate.

What I do not understand is why syz is so slow:

/**/ use ZZ/(19)[u[1..100],x,y[1..100]];

/**/ f1 := x^4 -x^2 +7*x -7;

/**/ f2 := x^4 +4*x^3 -6*x^2 -6*x +7;

/**/ g1 := subst(f1,x,u[1]-y[1]);

/**/ g2 := subst(f2,x,u[1]-y[1]);

/**/ t0 := CpuTime(); syz([g1,g1]); TimeFrom(t0);

--> TAKES 11s on my computer

BUT if I do the computation in the smallest suitable ring (with indets u[1],x,y[1]) then it takes 0.02s

Probably this should be a new issue!

28 Apr 2024 2/4

#9 - 21 Mar 2024 10:01 - Anna Maria Bigatti

John Abbott wrote:

The new code seems to work now, and is faster if the polys are recognized as univariate.

What I do not understand is why syz is so slow:

[...]

BUT if I do the computation in the smallest suitable ring (with indets u[1],x,y[1]) then it takes 0.02s

On my computer this takes 0.222s (0.001 with indets u[1],x,y[1]).

Do you have debugging on?

#10 - 21 Mar 2024 10:25 - John Abbott

Ah yes, I do have debugging on.

Do you get a measurable time difference if the ring contains just 3 indets or if it contains 201 indets? Or even 2001?

It could be that there is some debugging check which takes a lot of time...

I'll investigate further this evening.

#11 - 21 Mar 2024 11:31 - Anna Maria Bigatti

It seems it's the "high number of variables" problem, and syz itself is quite fast: this examples takes ~4s on my computer.

Try with verbosity (first check out by verbosity additions):

/**/ SetVerbosityLevel(130);

/**/ /**/ use ZZ/(19)[u[1..400],x,y[1..400]];

/**/ f1 := x^4 -x^2 +7*x -7;

/**/ f2 := x^4 +4*x^3 -6*x^2 -6*x +7;

/**/ g1 := subst(f1,x,u[1]-y[1]);

/**/ g2 := subst(f2,x,u[1]-y[1]);

/**/ t0 := CpuTime(); syz([g1,g1]); TimeFrom(t0);

#12 - 21 Mar 2024 11:33 - Anna Maria Bigatti

- Related to Slug #1057: Slug: Polynomial ring contructor slow with (big) matrix ordering added

#13 - 21 Mar 2024 11:54 - Anna Maria Bigatti

- Related to Slug #1068: PolyRing constructor: NewOrdvArith computed twice added

28 Apr 2024 3/4

#14 - 21 Mar 2024 12:02 - Anna Maria Bigatti

The problem for multivariate syz with many indets (from note-8 on) seems to be considered in #1057 and #1068, so I would just close this issue.

#15 - 21 Mar 2024 20:18 - John Abbott

- Status changed from Resolved to Closed

- % Done changed from 70 to 100

- Estimated time set to 5.33 h

I have added some new tests to test-SparsePolyRing1.C.

I conform that Anna's example from comment 11 does seems to spend a long time "doing not much (apparently)" then whoosh the GB computation is

over in a flash!

The original example is now completed in about 0.001s (on my Linux laptop).

Closing.

#16 - 22 Mar 2024 09:25 - John Abbott

- Related to Design #1798: Computing in sub polyring added

Powered by TCPDF (www.tcpdf.org)

28 Apr 2024 4/4

https://cocoa.dima.unige.it/redmine/issues/1057
https://cocoa.dima.unige.it/redmine/issues/1068
http://www.tcpdf.org

