
CoCoALib - Bug #1601

Compilation ambiguity

16 Jun 2021 16:28 - John Abbott

Status: Closed Start date: 16 Jun 2021

Priority: Normal Due date:

Assignee: John Abbott % Done: 100%

Category: Portability Estimated time: 2.22 hours

Target version: CoCoALib-0.99800 Spent time: 2.15 hours

Description

I have looked better at Florian's problem (in issue #1600).

The cause of the trouble is that the compiler prefers to pick the function ::std::apply rather than ::CoCoA::apply.

Both fns are template functions.

The troublesome line(s) are in HomomorphismOps.C (first is around 147, but other calls to apply trigger trouble too).

An "obvious" use of using ::CoCoA::apply; did not work as hoped.

Related issues:

Related to CoCoALib - Bug #1600: Detect updated versions of external libs In Progress 14 Jun 2021

Related to CoCoALib - Design #1467: Change syntax apply(phi,M) into phi(M)? Closed 22 Jun 2020

Related to CoCoALib - Design #1576: cmp for machine integers In Progress 08 Feb 2021

Related to CoCoALib - Feature #1598: RingHom: implement phi(X) as apply(phi, ... Closed 10 Jun 2021

History

#1 - 16 Jun 2021 16:28 - John Abbott

- Related to Bug #1600: Detect updated versions of external libs added

#2 - 16 Jun 2021 16:30 - John Abbott

I am not sure what the problem here is. clang on Anna's computer seems not to have trouble.

My linux box has gcc version 7.5; Florian's machine has gcc 11.1.0.

Might there be a compiler problem? Possible, but unlikely.

The using command above did not cause any compilation warnings or errors, but also did not fix the problem (on Florian's box).

#3 - 21 Jun 2021 14:06 - John Abbott

Right now Florian cannot make further tests... his compiler is defunct (after trying some "gymnastics" to revert to gcc-10).

#4 - 02 Jul 2021 15:41 - John Abbott

- Assignee set to John Abbott

Florian reports problems compiling the following mini-prog using gcc-11.

#include <vector>

#include <iostream>

#include <algorithm>

#include <tuple>

using namespace std;

 class BASE

 {

 public:

29 Apr 2024 1/4

https://cocoa.dima.unige.it/redmine/issues/1600

 BASE(): datum(0) {}

 private:

 int datum;

 };

 class DERIV: public BASE

 {

 public:

 DERIV(): BASE(), datum2(1) {}

 private:

 int datum2;

 };

 class Function

 {

 public:

 Function() {}

 int operator()(const BASE& b) const { return 2; }

 };

 template <typename T>

 std::vector<int> apply(const Function& F, const std::vector<T>& v)

 {

 std::vector<int> ans;

 std::transform(v.begin(), v.end(), std::back_inserter(ans), [&F](const T& x){ return F(x); });

 return ans;

 }

 int main()

 {

 std::vector<DERIV> v(2,DERIV());

 Function F;

 std::vector<int> vv = apply(F,v);

 std::cout << v.size() << std::endl;

 for (int i: vv) std::cout << i << std::endl;

 }

ERROR message is (in german):

In Datei, eingebunden von /usr/include/c++/11.1.0/functional:54,

 von /usr/include/c++/11.1.0/pstl/glue_algorithm_defs.h:13,

 von /usr/include/c++/11.1.0/algorithm:74,

 von test.c:3:

/usr/include/c++/11.1.0/tuple: In Instanziierung von »constexpr const size_t std::tuple_size_v<std::vector<DER

IV> >«:

/usr/include/c++/11.1.0/tuple:1816:24: erfordert durch »constexpr decltype(auto) std::apply(_Fn&&, _Tuple&&)

 [mit _Fn = Function&; _Tuple = std::vector<DERIV>&]«

test.c:43:32: von hier erfordert

/usr/include/c++/11.1.0/tuple:1334:61: Fehler: unvollständiger Typ »std::tuple_size<std::vector<DERIV> >« in g

eschachtelter Namensangabe verwendet

 1334 | inline constexpr size_t tuple_size_v = tuple_size<_Tp>::value;

 | ^~~~~

29 Apr 2024 2/4

#5 - 19 Jul 2021 15:54 - John Abbott

- Status changed from New to In Progress

- % Done changed from 0 to 10

I have now modified apply.H so that the apply function for vectors is just a normal function (rather than a pointless template fn).

Amazingly, on Florian's computer (Arch Linux with gcc-11.1) the compiler still prefers std::apply over the non-template apply fn.

What is going on?

Other compilers have no problem!

I do note that cppreference states that std::apply is available from c++17 onwards.

Perhaps Florian needs a flag to limit to the c++14 standard... but that is not a good long-term solution.

Grrr!

#6 - 02 Aug 2021 09:53 - John Abbott

- Related to Design #1467: Change syntax apply(phi,M) into phi(M)? added

#7 - 01 Sep 2021 14:13 - John Abbott

- Related to Design #1576: cmp for machine integers added

#8 - 20 Sep 2021 16:49 - John Abbott

Florian succeeded in installing g++-10 on his computer; and he reports that CoCoALib compiled just fine (except a known problem with

test-MachineInt)

Mmmm, what to do?

#9 - 21 Sep 2021 11:31 - John Abbott

I think I know understand what happens: g++ v.11 has as default C++ version something newer than C++14.

My script cxx14.sh simple checks that the version is at least C++14, but it should instead check that

the version is exactly C++14.

#10 - 30 Sep 2021 14:09 - John Abbott

- Related to Feature #1598: RingHom: implement phi(X) as apply(phi, X) also for X vector and matrix added

#11 - 04 Oct 2021 12:08 - John Abbott

- % Done changed from 10 to 90

This particular problem has been resolved (by eliminating the apply fn from CoCoALib).

In this case the removal has led to neater code (I think).

What I do not like is the looming problem of future versions of C++ hiding CoCoALib functions with the same name.

This is a worrying/nasty aspect of new changes introduced into C++; perhaps jumping to C++20, and hoping that

restrictions/constraints on the STL template fn will avoid the problem. Need outside help for this!

29 Apr 2024 3/4

#12 - 04 Feb 2022 21:44 - John Abbott

- Status changed from In Progress to Closed

- % Done changed from 90 to 100

- Estimated time set to 2.22 h

Let's cross our fingers and hope that the problem has gone away by the time we jump to C++20.

Closing this issue.... probably a new similar one will appear at some point (sigh).

Powered by TCPDF (www.tcpdf.org)

29 Apr 2024 4/4

http://www.tcpdf.org

