CoCoA-5 - Bug #1595

Bad input causes crash
13 May 2021 21:59 - John Abbott

Status: Closed Start date: 13 May 2021
Priority: High Due date:

Assignee: John Abbott % Done: 100%
Category: bug Estimated time: 2.50 hours
Target version: CoCoA-5.4.0 Spent time: 2.35 hours
Description

Even after my latest update CoCoA can still crash with bad input:

/**/ o]
—-—> ERROR: Using two unary operators in a row is not allowed; please check your expression and par
enthesize its inner sub-expression if this is really what you want

[[waiting for semicolon]] /**/ +%

——> ERROR: Using two unary operators in a row is not allowed; please check your expression and par
enthesize its inner sub-expression if this is really what you want

—_——> A

CoCoAInterpreter: /usr/local/include/boost/smart_ptr/intrusive_ptr.hpp:199: T* boost::intrusive_pt
r<T>::operator->() const [with T = const CoCoA::LexerNS::Line]: Assertion "px != 0' failed.

Related issues:
Related to CoCoA-5 - Bug #1594: Parser bug: missing close square bracket Closed 08 May 2021

History

#1 - 13 May 2021 21:59 - John Abbott
- Related to Bug #1594: Parser bug: missing close square bracket added

#2 - 13 May 2021 22:00 - John Abbott

Separate issue because | think the cause is different; at least the error message seems to be different.

How tedious :-(

#3 - 14 May 2021 17:14 - John Abbott

28 Apr 2024 1/4

#4 - 16 May 2021 10:47 - John Abbott

- Status changed from New to In Progress
- Priority changed from Normal to High

- % Done changed from 0 to 10

Here is an entertaining failing input:

CoCoA's response is:

) —
[[waiting for semicolon]] /**/ -

——> ERROR: Using two unary minus operators in a row is not allowed because it looks suspiciously like as a mis
typed single-line comment; please parenthesize the inner expression or remove the blank(s) to make your intent
ions clear

s —

——> A

s -

—_> A

[[waiting for semicolon]] /**/ -

——> ERROR: Using two unary minus operators in a row is not allowed because it looks suspiciously like as a mis
typed single-line comment; please parenthesize the inner expression or remove the blank(s) to make your intent
ions clear

s o
77> A

CoCoAlInterpreter: /usr/local/include/boost/smart_ptr/intrusive_ptr.hpp:199: T* boost::intrusive_ptr<T>::operat
or->() const [with T = const CoCoA::LexerNS::Line]: Assertion "px != 0' failed.

Process cocoa5 aborted (core dumped)

The problem seems to be when a syntax error has been detected on one line, and then the next line triggers another syntax error... BOOM!

NOTE: however the amusing example does not crash with + instead of - (in all 3 cases).

28 Apr 2024 2/4

#5 - 20 May 2021 17:02 - John Abbott
- % Done changed from 10 to 20

| have not found the real bug, but do have a workaround.

| have changed Parser::checkTherelsntAnotherUnaryPlusOrMinus (in Parser.C around lines 2163--2170)
Now it just indicates the second unary minus (or plus), rather than trying to underline both unary operators (and all intervening space).

| do not know why the previous version of the code was troublesome: somewhere in the loop in DefaultErrorReporter::outputUnderlinedChars
a null pointer is encountered. Source is in Lexer.C around lines 653--664.

#6 - 27 May 2021 14:28 - John Abbott
How should the error be reported?
In the fn Parser::checkTherelsntAnotherUnaryPlusOrMinus the error is reported by calling this->reportError,

but in many other functions errors are signalled by throwing an exception, e.g.

throw UnexpectedTokenException ("Using two unary minus operators in a row is not allowed because it looks suspi
ciously like as a mistyped single-line comment; please parenthesize the inner expression or remove the blank (s
) to make your intentions clear", t);

What is the difference?
It could be that this->reportError allows a range of input to be specified (and this is what actually caused trouble).

Which method should we use here?

#7 - 27 May 2021 22:31 - John Abbott
- % Done changed from 20 to 30

| have just tried a slightly modified test, namely

If the code calls reportError then the message about "2 unary minus" appears twice.
Instead if the code throws then the mesg appears just once.

28 Apr 2024 3/4

#8 - 10 Jun 2021 21:37 - John Abbott
- Assignee set to John Abbott
- % Done changed from 30 to 50

JAA now thinks that explicitly throwing an exception is probably neater than calling reportError.
I'll revise the code, test it, and check in.

#9 - 21 Jun 2021 15:44 - John Abbott

- Status changed from In Progress to Closed
- % Done changed from 50 to 100

- Estimated time set to 2.50 h

28 Apr 2024 4/4

http://www.tcpdf.org

