CoCoA-5 - Bug #1595

Bad input causes crash
13 May 2021 21:59 - John Abbott

Status: Closed Start date: 13 May 2021
Priority: High Due date:

Assignee: John Abbott % Done: 100%
Category: bug Estimated time: 2.50 hours
Target version: CoCoA-5.4.0 Spent time: 2.35 hours
Description

Even after my latest update CoCoA can still crash with bad input:

/**/ o]
—-—> ERROR: Using two unary operators in a row is not allowed; please check your expression and par
enthesize its inner sub-expression if this is really what you want

[[waiting for semicolon]] /**/ +%

——> ERROR: Using two unary operators in a row is not allowed; please check your expression and par
enthesize its inner sub-expression if this is really what you want

—_——> A

CoCoAInterpreter: /usr/local/include/boost/smart_ptr/intrusive_ptr.hpp:199: T* boost::intrusive_pt
r<T>::operator->() const [with T = const CoCoA::LexerNS::Line]: Assertion "px != 0' failed.

Related issues:
Related to CoCoA-5 - Bug #1594: Parser bug: missing close square bracket Closed 08 May 2021

History

#1 - 13 May 2021 21:59 - John Abbott
- Related to Bug #1594: Parser bug: missing close square bracket added

#2 - 13 May 2021 22:00 - John Abbott

Separate issue because | think the cause is different; at least the error message seems to be different.

How tedious :-(

#3 - 14 May 2021 17:14 - John Abbott

28 Apr 2024 1/4




#4 - 16 May 2021 10:47 - John Abbott

- Status changed from New to In Progress
- Priority changed from Normal to High

- % Done changed from 0 to 10

Here is an entertaining failing input:

CoCoA's response is:

) —
[[waiting for semicolon]] /**/ -

——> ERROR: Using two unary minus operators in a row is not allowed because it looks suspiciously like as a mis
typed single-line comment; please parenthesize the inner expression or remove the blank(s) to make your intent
ions clear

s —

——> A

s -

—_> A

[[waiting for semicolon]] /**/ -

——> ERROR: Using two unary minus operators in a row is not allowed because it looks suspiciously like as a mis
typed single-line comment; please parenthesize the inner expression or remove the blank(s) to make your intent
ions clear

s o
77> A

CoCoAlInterpreter: /usr/local/include/boost/smart_ptr/intrusive_ptr.hpp:199: T* boost::intrusive_ptr<T>::operat
or->() const [with T = const CoCoA::LexerNS::Line]: Assertion "px != 0' failed.

Process cocoa5 aborted (core dumped)

The problem seems to be when a syntax error has been detected on one line, and then the next line triggers another syntax error... BOOM!

NOTE: however the amusing example does not crash with + instead of - (in all 3 cases).
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#5 - 20 May 2021 17:02 - John Abbott
- % Done changed from 10 to 20

| have not found the real bug, but do have a workaround.

| have changed Parser::checkTherelsntAnotherUnaryPlusOrMinus (in Parser.C around lines 2163--2170)
Now it just indicates the second unary minus (or plus), rather than trying to underline both unary operators (and all intervening space).

| do not know why the previous version of the code was troublesome: somewhere in the loop in DefaultErrorReporter::outputUnderlinedChars
a null pointer is encountered. Source is in Lexer.C around lines 653--664.

#6 - 27 May 2021 14:28 - John Abbott
How should the error be reported?
In the fn Parser::checkTherelsntAnotherUnaryPlusOrMinus the error is reported by calling this->reportError,

but in many other functions errors are signalled by throwing an exception, e.g.

throw UnexpectedTokenException ("Using two unary minus operators in a row is not allowed because it looks suspi
ciously like as a mistyped single-line comment; please parenthesize the inner expression or remove the blank (s
) to make your intentions clear", t);

What is the difference?
It could be that this->reportError allows a range of input to be specified (and this is what actually caused trouble).

Which method should we use here?

#7 - 27 May 2021 22:31 - John Abbott
- % Done changed from 20 to 30

| have just tried a slightly modified test, namely

If the code calls reportError then the message about "2 unary minus" appears twice.
Instead if the code throws then the mesg appears just once.
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#8 - 10 Jun 2021 21:37 - John Abbott
- Assignee set to John Abbott
- % Done changed from 30 to 50

JAA now thinks that explicitly throwing an exception is probably neater than calling reportError.
I'll revise the code, test it, and check in.

#9 - 21 Jun 2021 15:44 - John Abbott

- Status changed from In Progress to Closed
- % Done changed from 50 to 100

- Estimated time set to 2.50 h
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