CoCoA-5 - Bug \#1574
ApproxSolveTF
03 Feb 2021 17:46 - John Abbott

]

I'm not quite sure what happened there. ApproxSolve can handle this (if I increase the internal precision enough): it finds these solutions:
[

```
    ["8.7581*10^(-47)", "-1.0685*10^23", "0.0000076294"],
    ["8.7581*10^(-47)", "-1.0685*10^23", "0.0000076294"],
    ["8.7581*10^(-47)", "1.0685*10^23", "0.0000076294"],
    ["8.7581*10^(-47)", "1.0685*10^23", "0.0000076294"],
    ["0.99998", "0.0089742", "111.43"],
    ["2.6487*10^18", "1.0685*10^23", "0.0000076294"],
    ["2.6487*10^18", "-1.0685*10^23", "0.0000076294"]
```

]

Related issues:

Related to CoCoA-5 - Bug \#1216: RationalSolve: gives wrong answer	Closed	07 Aug 2018
Related to CoCoA-5 - Bug \#1573: ApproxSolve: very imprecise	Closed	30 Jan 2021

History

\#1-03 Feb 2021 17:48 - John Abbott
I have set the target version as 5.3 .6 , but maybe it could be postponed?

It is a bit strange that the solution $[0,0,0]$ appears several times. Not sure what that means.
Maybe these fns (ApproxSolve and ApproxSolveTF) should automatically check that the solutions looks "plausible" but substituting into the orig polys, and verifying that the values obtained are reasonably small (whatever that might mean).

\#2-03 Feb 2021 17:51 - John Abbott

- Description updated

\#3-03 Feb 2021 22:39-John Abbott

- Related to Bug \#1216: RationalSolve: gives wrong answer added

\#4-16 Feb 2021 14:04 - John Abbott

The code seems to be a bit convoluted. It'll take time to work out what it is supposed to be doing... not today!

\#5-24 Sep 2021 22:26 - John Abbott

- Related to Bug \#1573: ApproxSolve: very imprecise added

\#6-24 Sep 2021 22:29 - John Abbott

Probably ApproxSolveTF should have an accuracy-check-loop the same was as was done for ApproxSolve:
the heuristic is that the final value of each poly should be at most $10^{\wedge}(-6)$ times that max value of a term in the poly (so that heuristically there is "good cancellation").

Of course, if you think of a better heuristic, let us know!

