
CoCoALib - Bug #1570

FloatStr sometimes produces NUL chars

28 Jan 2021 19:12 - John Abbott

Status: Closed Start date: 28 Jan 2021

Priority: Normal Due date:

Assignee: John Abbott % Done: 100%

Category: Maths Bugs Estimated time: 8.11 hours

Target version: CoCoALib-0.99800 Spent time: 7.95 hours

Description

Here is a concrete example:

 cout << FloatStr(BigRatFromString("53113799281676709868958820655246862732959311772703192319944

41382004035598608522427391625022652292856688893294862465010153465793376527072394095199787665873519

43831270835393219/53113799281676709868958820655246862732959311772703192319944413820040355986085224

27391625022652292856688893294862465010153465793376527072394095199787665873519438312708353932190317

28128"),176) << endl;

The output is

9.99

99^@*10^(-9)

History

#1 - 28 Jan 2021 19:13 - John Abbott

The bug is more embarrassing than dangerous...

Don't yet have a simpler failing example.

Of course, it came up while giving a demo :-(

#2 - 28 Jan 2021 19:17 - John Abbott

- Status changed from New to In Progress

- % Done changed from 0 to 10

The exponent is wrong by 1: it should be -10.

#3 - 28 Jan 2021 19:25 - John Abbott

Operating on 10*q produces the same mantissa (with NUL) but without exponent.

Operating on 100*q produces a correct result: the digit 4 instead of NUL.

Most odd!

#4 - 28 Jan 2021 19:48 - John Abbott

FloatStr simply calls MantissaAndExponent10 to do the main conversion.

09 May 2024 1/4

Indeed MantissaAndExponent10 behaves wrongly

Here are the outputs for q, 10*q and 100*q

MantExp10(sign=1, exp=-9, mant=999

99, NumDigits=17

6)

MantExp10(sign=1, exp=-8, mant=999

99, NumDigits=17

6)

MantExp10(sign=1, exp=-8, mant=999

994, NumDigits=1

76)

#5 - 28 Jan 2021 20:35 - John Abbott

Aha! It seems that FloorLog10 sometimes give wrong answers... groan.

With luck that is the root cause.

#6 - 28 Jan 2021 21:37 - John Abbott

- Assignee set to John Abbott

- % Done changed from 10 to 80

I have found what is most likely the cause (after tracing through with the debugger).

The problem was in FloorLogBase, in ptic the definition of the value delta.

For "efficiency", an approx log was computed using floating-point; delta is an estimate of how inaccurate the fp log might be.

The old estimate was 5ulp, but apparently this was not always enough.

I have now increased the estimate to 256ulp; probably even 8ulp should be enough.

The only disadvantage is that a full check will be made a bit more often -- this happens only when the supplied value is "very close to" an integer

power of the base.

I have inserted an assert also for the "safe case" (where input is "far from" an integer power).

Analogous change to FloorLogBase for BigInt.

#7 - 29 Jan 2021 09:31 - John Abbott

Here is a simpler failing case:

09 May 2024 2/4

N := 10^20-1;

Q := N/10^21;

FlooLog10(Q); --> -1 instead of -2

N := 10^30-1;

Q := N/10^29;

FloorLog10(Q); --> 1 instead of 0

This code prints out many triples -- it should print out none!

 for B := 18 to 99 do N := 10^B-1; for j := 0 to 200 do F := FloorLog10(N/10^j); if F <> B-1-j then println [B

,j,F]; endif; endfor; endfor;

#8 - 29 Jan 2021 09:56 - John Abbott

This is not good.

I have increased the factor in the definition of delta to 64: there are still failing cases:

/**/ for B := 18 to 199 do N := 10^B-1; for j := 0 to 250 do F := FloorLog10(N/10^j); if F <> B-1-j then print

ln [B,j,F]; endif; endfor; endfor;

[117, 116, 1]

[123, 122, 1]

[128, 127, 1]

[134, 133, 1]

[140, 139, 1]

[146, 145, 1]

[152, 151, 1]

[158, 157, 1]

[164, 163, 1]

[170, 169, 1]

[176, 175, 1]

[182, 181, 1]

[188, 187, 1]

[194, 193, 1]

The problem seems to occur only with BigRat; I have tried a similar test loop with BigInt but found no failing examples.

I now guess that log for BigRat values with large numer-denom is giving imprecise values:

this could result from a simplistic impl log(N/D) = log(N)-log(D); if log(N/D) is small but log(N) is larger than 1000 (say)

then we could indeed lose 10 bits of precision.

I'll check the log code... (sigh)

09 May 2024 3/4

#9 - 29 Jan 2021 10:00 - John Abbott

And indeed the defn of log for BigRat is simply

 return log(num(Q)) - log(den(Q));

Now I need a new defn... [facepalm]

#10 - 30 Jan 2021 18:47 - John Abbott

I think everything is nearly sorted out now: the example in comment 8 now finds no problems (even over a much wider range).

I have a new fn mpq_get_d_2exp; actually there was an old one in RingQQ.C, but it was sometimes less accurate than the new one.

There is also a new fn LogAbs, and the existing log now requires arg to be positive (previously it behaved like the new LogAbs fn).

Updated some doc; added new test in test-BigRat3.C

Soon I can check in.

#11 - 30 Jan 2021 20:21 - John Abbott

- Status changed from In Progress to Feedback

- % Done changed from 80 to 90

#12 - 16 Sep 2021 12:32 - John Abbott

- Status changed from Feedback to Closed

- % Done changed from 90 to 100

- Estimated time set to 8.11 h

Powered by TCPDF (www.tcpdf.org)

09 May 2024 4/4

http://www.tcpdf.org

