CoCoALib - Slug #1557

Reading list of rationals is too slow
05 Jan 2021 21:43 - John Abbott

Status: Closed Start date: 05 Jan 2021
Priority: Normal Due date:

Assignee: John Abbott % Done: 100%
Category: Improving Estimated time: 3.11 hours
Target version: CoCoALib-0.99850 Spent time: 3.15 hours
Description

Winfried Bruns sent me a file with about 100000 rationals (total size about 130Mbytes).

If I read the file in using an obvious C++ loop (which stops when reading 0, which | added as an end marker), it takes about 8.8s
A modified version of the file represents the list as a CoCoA-5 comma-separated list: CoCoA-5 reads the list in about 4s.

Why is the direct C++ impl slower?

Investigate & fix.

History

#1 - 05 Jan 2021 21:55 - John Abbott

The profiler indicates that major costs are hged (from GMP) and ScanUnsignedintegerLiteral (from CoCoALib).

JAA is quite surprised that ScanUnsignedIintegerLiteral is so costly... he will investigate.

#2 - 06 Jan 2021 11:32 - John Abbott

- Status changed from New to In Progress
- Assignee set to John Abbott

- % Done changed from 0 to 10

I'm still puzzled: ScanUnsignedintegerLiteral continue to be slower than whatever the CoCoA-5 interpreter does; could it just be that reading (from an
istream) chars 1 at a time is slow? The interpreter reads a whole line in one go, and then scans that.

The slow impl (about 8.8s) is this:

// while (true)

/7 A

// const char ch = in.peek(); // this may set eofbit
// if (!in.good() || !isdigit (ch)) break;

// in.ignore();

// digits += ch;

//)

The faster impl (5.5s) is this: [corrected 2021-01-07]

char ch;
while (true)

{

in.get (ch);
if (in.eof()) { in.clear(); break; }
if (!isdigit(ch)) { in.unget(); break; }

digits += ch;

28 Apr 2024 1/3

| also tried with back_inserter instead of op+= but that was a bit slower (5.8s).

#3 - 06 Jan 2021 11:40 - John Abbott

| have found a potentially useful entry on StackOverflow: link
https://stackoverflow.com/questions/9272276/can-you-specify-what-isnt-a-delimiter-in-stdgetline
To be honest, | am a little surprised that this is not already part of a standard library.

Michael Burr posted the following code (I have not tried it):

#include <functional>
#include <iostream>
#include <string>

using namespace std;

template <typename Predicate>
istream& getline_until(istream& is, string& str, Predicate pred)
{

bool changed = false;

istream::sentry k(is,true);

if (bool(k)) {
streambuf& rdbuf (*is.rdbuf ());
str.erase();

istream::traits_type::int_type ch = rdbuf.sgetc(); // get next char, but don't move stream position
for (;;ch = rdbuf.sgetc()) {
if (istream::traits_type::eof() == ch) {
is.setstate (ios_base::eofbit);
break;

}
changed = true;

rdbuf.sbumpc(); // move stream position to consume char
if (pred(istream::traits_type::to_char_type(ch))) {
break;

}
str.append(l,istream::traits_type::to_char_type(ch));

if (str.size() == str.max_size()) {
is.setstate(ios_base::failbit);
break;

if (!changed) {
is.setstate(ios_base::failbit);

return is;

28 Apr 2024 2/3

#4 - 07 Jan 2021 20:02 - John Abbott
- Status changed from In Progress to Resolved

- % Done changed from 10 to 50

There was a bug in my first version of the faster code: in.get(ch) does not put EOF into ch when EOF is reached -- | had misread the manual.
Took a long to track down the bug (because many tests had passed).

Should | try that code copied from StackOverflow? :-/

#5 - 10 Mar 2023 17:46 - John Abbott

- Status changed from Resolved to Closed
- % Done changed from 50 to 100

- Estimated time setto 3.11 h

This is not so important. Yes, it is strange that CoCoA-5 can read the input so fast... but it is not important.

#6 - 10 Mar 2023 18:23 - Anna Maria Bigatti

- Subject changed from Readling list of rationals is too slow to Reading list of rationals is too slow

28 Apr 2024 3/3

http://www.tcpdf.org

