
CoCoALib - Slug #1518

SLUG: Printing PPs with many indets

23 Oct 2020 16:32 - John Abbott

Status: In Progress Start date: 23 Oct 2020

Priority: Normal Due date:

Assignee: % Done: 20%

Category: Improving Estimated time: 0.00 hour

Target version: CoCoALib-0.99900 Spent time: 2.00 hours

Description

It seems that printing polys in polyrings with many indets is slower than I would like: the example from issue #1514 involves printing

out many polys from a ring with 1000 indets, and printing takes surprisingly long (longer than re-reading the same polys!)

Investigate and improve (if poss).

Related issues:

Related to CoCoALib - Design #1538: RingElem from string (ReadExpr) Closed 13 Nov 2020

History

#1 - 23 Oct 2020 16:36 - John Abbott

According to the profiler: printing 250 polys each with about 500 terms (RandomLinearForm from polyring with 1000 indets) calls

 0.21 9.65 124871/124871 CoCoA::operator<<(std::ostream&, CoCoA::ConstRefPPMonoidElem)

 [24]

[25] 20.1 0.21 9.65 124871 CoCoA::PPMonoidBase::myOutput(std::ostream&, CoCoA::PPMonoidElemC

onstRawPtr) const [25]

 0.52 8.71 124871000/124871000 CoCoA::PPMonoidOvImpl::myBigExponent(CoCoA::BigInt&, CoCo

A::PPMonoidElemConstRawPtr, long) const [26]

 0.11 0.27 124871000/124871026 CoCoA::IsZero(CoCoA::BigInt const&) [40]

There are two points here:

1. why is it calling myBigExponent instead of myExponent (which should return a long)?

2. why is myBigExponent being called so many times? Isn't there a myBigExponentVec or similar?

#2 - 26 Oct 2020 16:59 - John Abbott

- Status changed from New to In Progress

- % Done changed from 0 to 10

I propose the following revision to the design:

(A) each PPMonoid has a fn which says whether it can handle only "small" exponents (or whether big ones are possible); we can then have 2

print fns one which works only for small exps, and one which works for larger exps

(B) the print fn should anyway use expvs (since computing one expv is surely no more expensive than computing each exp individually).

(C) (not so sure about this) the "small" expv fn could return a boolean saying whether it succeeded -- this would allow using "small" expvs

where possible (even if the PPMonoid could represent larger exps)

10 May 2024 1/3

https://cocoa.dima.unige.it/redmine/issues/1514

If we implement (C) then (A) may not longer be that useful.

#3 - 26 Oct 2020 20:06 - John Abbott

Here is a reference test:

N := 4*1024;

use P ::= ZZ/(2)[x[1..N]];

f := sum(indets(P));

StartTime := CpuTime();

for i := 1 to 10 do

 str := sprint(f);

endfor;

println "sprint time: ", TimeFrom(StartTime);

TimeFrom(0);

On my machine the loop took about 5.4s; altogether it took about 47s.

#4 - 26 Oct 2020 20:20 - John Abbott

I have just tried modifying the impl (PPMonoid.C around lines 215--230, PPMonoidBase::myOutput).

The modified version calls myBigExponents and then runs through this vector. It takes 9.4s instead of 5.4.

Huh???

Time for a break!

#5 - 27 Oct 2020 15:21 - John Abbott

I have just repeated the experiment, but in CoCoALib. This is the test program:

 ring P = NewPolyRing(NewZZmod(2), SymbolRange("x",1,4096));

 RingElem f = sum(indets(P));

 double t0 = CpuTime();

 ostringstream out;

 out << f;

 double t1 = CpuTime();

 cout << "len(out) = " << out.str().size() << endl;

 cout << "Print time: " << t1-t0 << endl;

With myBigExponents printing took about 0.72s.

With myBigExponent called several times, printing took about 0.56s

I tried running with profiling; then the times were reversed (i.e. myBigExponents was decidedly faster).

At the moment I cannot explain these results: they are contrary to my expectations. :-(

10 May 2024 2/3

#6 - 27 Oct 2020 15:56 - John Abbott

- % Done changed from 10 to 20

I have just tried again but with SmallExponent_t being unsigned short (previously it was unsigned int).

Printing times remain almost unchanged: 0.71s and 0.55s.

For information: Total time was considerably lower: about 3.3s against 6.3s.

#7 - 29 Oct 2020 14:52 - John Abbott

Here is a guess as to why the observed times are as they are:

with myBigExponents the ctor for BigInt is called NumIndets times, whereas with myBigExponent in a loop the ctor for BigInt is called just once.

As a test I could try replacing myBigExponents by myExponents (which is safe in the test I used)...

#8 - 30 Oct 2020 15:59 - John Abbott

Anna suggest using a virtual fn for printing which is specialized in PPMs which can have big exps.

JAA will think about it.

#9 - 03 Nov 2021 16:53 - John Abbott

- Target version changed from CoCoALib-0.99800 to CoCoALib-0.99850

#10 - 12 May 2023 07:21 - Anna Maria Bigatti

- Related to Design #1538: RingElem from string (ReadExpr) added

#11 - 15 Feb 2024 22:45 - John Abbott

- Target version changed from CoCoALib-0.99850 to CoCoALib-0.99900

Powered by TCPDF (www.tcpdf.org)

10 May 2024 3/3

http://www.tcpdf.org

