
CoCoALib - Design #1500

IsDivisible in a field?

05 Oct 2020 14:29 - John Abbott

Status: Closed Start date: 05 Oct 2020

Priority: Normal Due date:  

Assignee: John Abbott % Done: 100%

Category: Safety Estimated time: 3.99 hours

Target version: CoCoALib-0.99800 Spent time: 3.95 hours

Description

What should IsDivisible(a,b) do with arguments in a field?

Currently it returns the same as not(b = 0).

This is mathematically correct, but I have just seen an example of writing a function where IsDivisible was called on elements of

QQ... the programmer knew that the value was an integer but had overlooked that it was actually represented as a rational.

So... should IsDivisible give an error if handed elements of a field?  If the user really wants to test not(b=0) then it is surely better to

write it explicitly...?

Related issues:

Related to CoCoALib - Design #377: IsDivisible -- exact semantics? Closed 19 Jun 2013

Related to CoCoALib - Design #1085: Fns with "OUT" args: should they give ERR... Closed 30 Jun 2017

History

#1 - 05 Oct 2020 14:32 - John Abbott

This might be a bit like computing gcd: strictly we can define it for a field, but we opted instead to give an error.

The idea is to help the programmer avoid mistakes.  What actually happened was that the discriminant of a polynomial in QQ[x] which has integer

coeffs

is itself an integer, and then the program had to look for a special non-divisor of this integer... but instead the program entered an infinite loop (even

though the code "looked correct").

#2 - 05 Oct 2020 14:33 - John Abbott

- Related to Design #377: IsDivisible -- exact semantics? added

#3 - 08 Oct 2020 12:35 - John Abbott

- Status changed from New to In Progress

- % Done changed from 0 to 10

I am becoming increasingly convinced that it is better to throw an error if the args are in a field (since it makes little sense to test for divisibility in a

field).

Another related matter is whether IsDivisible should allow automatic ring conversion... perhaps that should be another issue?

#4 - 09 Oct 2020 09:19 - John Abbott

- Description updated

This is a bit less clear than I had previously thought.  In the file ring.C the function IsDivisible (with 3 args) is used fairly widely: here is an example

(around ring.C:700)
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    RingElem div_SameRing(ConstRefRingElem x, ConstRefRingElem y)

    {

      const ring& Rx = owner(x);

      CoCoA_ASSERT(Rx == owner(y));

      if (IsZeroDivisor(y)) CoCoA_THROW_ERROR(ERR::DivByZero, "RingElem / RingElem");

      RingElem ans(Rx);

      if (!Rx->myIsDivisible(raw(ans), raw(x), raw(y)))

        CoCoA_THROW_ERROR(ERR::BadQuot, "RingElem / RingElem");

      return ans;

    }

 

This would become annoyingly messy if we had to handle fields in a special way.

Perhaps the solution is that myIsDivisible with 3 args should have another name?

#5 - 09 Oct 2020 11:03 - John Abbott

I have tried implementing the change (i.e. IsDivisibile throws if given args in field).

Two tests fail: test-IsInteger1 and test-OrderedDomain1.

Mmmm.  What to do?

#6 - 09 Oct 2020 20:06 - John Abbott

- Assignee set to John Abbott

- % Done changed from 10 to 20

A comment about the code excerpt in comment 4.  The call to IsZeroDivisor is superfluous; perhaps it was put there to give a more informative error

mesg?

Anyway, it would make more sense to call IsZeroDivisor after having established that division fails; certainly for arithmetic in ZZ/(N) attempting to

divide.and testing for being a zero-divisor are largely the same computation, so testing IsZeroDivisor may almost double the computational cost in

ZZ/(N).

For much the same reason, it is not worth having a non-virtual myIsDivisible which calls IsZeroDivisor, and if not then calls a virtual fn to do the

actual work.

A possible solution is to give IsDivisible an optional 3rd param e.g. PermitFieldElems.  In other words we offer two versions of IsDivisible: one

which gives error when handed field elems, and one which does not.  The default would be the version which does signal an error (to protect the

unwary user).
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#7 - 09 Oct 2020 21:19 - John Abbott

Also ex-RingElem1 fails...

#8 - 12 Oct 2020 20:52 - John Abbott

I still like the idea of a 3rd param (or perhaps two fns with similar names).

My preference is that a call like IsDivisible(x,y) gives error if the div-test is in a field; to permit testing also in a field the call should look "a bit more

complicated" (but not too much).

An advantage of two different fns is that we do not need to define a new type to use as the 3rd param -- yes, it is effectively a boolean, but a new and

specific type would make the code more readable.

If we opt for a 3rd param, there are two possible impls:

(A) there are 2 poss values for the 3rd param (e.g. DisallowFields and AllowFields)

(B) there is 1 poss value for the 3rd param (e.g. AllowFields)

Option (B) is perhaps marginally simpler to implement, but might make it slightly trickier if one wants to call a fn passing param saying which sort of

div-test to perform [TBH I cannot imagine when one might want to do this].  With option (A) one could simply pass whichever of the two values is the

desired one.  If there are two distinct div-test fns, then the fn to use could be passed as param.

UPDATE:  a possible alternative name could be IsDivisible_AllowFields; the name is long (probably a good thing), it is also clear (good!).

#9 - 14 Oct 2020 10:59 - John Abbott

Today my preference is for IsDivisible and IsDivisible_AllowFields.

I think these names are fairly clear, and would also be clear if they needed to be passed as a parameter.

Internal impl would probably use a fn IsDiv(a,b,bool) where bool indicates whether fields are allowed -- this design should maximise code sharing.

#10 - 14 Oct 2020 20:21 - John Abbott

- % Done changed from 20 to 50

Oh wow!  There are a lot more IsDivisible finctions than I thought... :-(

SERIOUS QUESTION

What should the following call to IsDivisible do?

// Assume R1, R2, R3 are different rings: R3 can be promoted to R2 (not a field)

RingElem a(R1);

RingElem b = one(R2);

RingElem c = one(R3);

IsDivisible(a,b,c); // error or not?

The point is that a is in the wrong ring.  Note that a = b/c; will succeed (and automatically change the ring of a to be R2).
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#11 - 14 Oct 2020 21:21 - John Abbott

- Status changed from In Progress to Feedback

- % Done changed from 50 to 90

There are now 20 different IsDivisible functions (half of them are actually IsDivisible_AllowFields).

I have modified test-IsInteger1, test-OrderedDomain1 and ex-RingElem1 to call IsDivisible_AllowFields instead of IsDivisible.  They all work now.

Regarding the question in comment 10: I have opted to make IsDivisible(a,b,c) behave like a = b/c if the division succeeds (otherwise a should remain

unchanged, but I am not sure I want to guarantee that in the doc).

#12 - 23 Oct 2020 10:57 - John Abbott

- Status changed from Feedback to Closed

- % Done changed from 90 to 100

- Estimated time set to 3.99 h

#13 - 27 Oct 2020 10:22 - John Abbott

- Related to Design #1085: Fns with "OUT" args: should they give ERR::MixedRings? added
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