CoCoALib - Bug \#1449

Bivariate factor bug: sometimes a factor is reducible

20 Apr 2020 13:54 - John Abbott

History

\#1-20 Apr 2020 13:56 - John Abbott
I have simplified slightly the problem (from what Nalbach reported by email).

About 7\% of calls gave a wrong result (after running a loop with 1000 iters).
Almost certainly an "unlucky random number" (but that should never happen...)

\#2-20 Apr 2020 15:32-John Abbott

- Status changed from New to In Progress
- Assignee set to John Abbott
- \% Done changed from 0 to 10

Here is a simpler failing example:
$\mathrm{p} 1:=(\mathrm{x}+\mathrm{y})^{*}\left(2 \mathrm{*}^{\wedge} \mathrm{x}^{\wedge}+\mathrm{x}^{*} \mathrm{y}+2{ }^{*} \mathrm{y}^{\wedge} 2-12\right)^{*}\left(120{ }^{*} \mathrm{x}^{\wedge} 6+250{ }^{*} \mathrm{y}^{\wedge} 6+168{ }^{*} \mathrm{x}^{*} \mathrm{y}-104\right)$;

I'll try making it simpler still. If I set coeffs of $x^{\wedge} 6$ and $y^{\wedge} 6$ both to 1 then it seems to work fine..

\#3-21 Apr 2020 10:18 - John Abbott

Here is a simpler example:

```
p1 := (x+y)* (x^2 + y^2)* (2* x^6 +y^6 +2);
```

I have tried reducing the exponent 6 but without success (i.e. the factorization comes out right).
This is probably simple enough that I should now start the hard phase... 8-\{

\#4-22 Apr 2020 21:57-John Abbott

- \% Done changed from 10 to 20

The problem is in the univariate factorizer (ouch!)

```
use QQ[x,y];
jj := (x+41)*(x^2+41^2)*(2*x^6+41^6+2); // subst(p1,y,41);
factor(jj); --> only 2 factors!!
p1 := (x+y)* (x^2 +y^2)* (2* x^6 +y^6+2);
subst(p1,y,37); // or -37, also goes wrong
subst(p1,y,41); // or -41, also goes wrong
```


\#5-23 Apr 2020 08:54-Anna Maria Bigatti

John Abbott wrote:
The problem is in the univariate factorizer (ouch!)
[...]

I confirm on my Mac: 2 factors :-(

\#6-24 Apr 2020 15:53-John Abbott

- \% Done changed from 20 to 30

I have found a bug... not yet sure how to fix it. :-/
The crucial line is around DUPZfactor_combine.c:315; the value of max_tuple_size can be incorrectly set to THIS->nfactors/2.
We have modular factors of degs $1,1,1,6$, and have just found a linear factor; so remaining modular factors have degs $1,1,6$, and for some reason the code thinks the search does not need to consider 2-tuples... logic error!

Here is a simpler univariate problem poly:
$\mathrm{f}:=(\mathrm{x}+41)^{*}\left(\mathrm{x}^{\wedge} 2+41^{\wedge} 2\right) *\left(2 * x^{\wedge} 6+1608941\right) ;$

\#7-24 Apr 2020 16:36 - John Abbott

- \% Done changed from 30 to 40

Here is an even simpler example:
$\mathrm{f}:=(\mathrm{x}+11)^{*}\left(\mathrm{x}^{\wedge} 2+11^{\wedge} 2\right) *\left(2 * \mathrm{x}^{\wedge} 4+235885\right)$;
$\mathrm{f}:=(\mathrm{x}+11)^{*}\left(\mathrm{x}^{\wedge} 2+1\right) *\left(2 * \mathrm{x}^{\wedge} 4+235771\right) ;--2 * x^{\wedge} 7+22^{*} \mathrm{x}^{\wedge} 6+2 * \mathrm{x}^{\wedge} 5+22^{*} \mathrm{x}^{\wedge} 4+235771 * \mathrm{x}^{\wedge} 3+2593481 * \mathrm{x}^{\wedge} 2+235771 * \mathrm{x}+259348$
1

And some even simpler examples:
flist $:=\left[(x+11) *\left(x^{\wedge} 2+1\right) *\left(x^{\wedge} 4+n\right) \mid n \operatorname{in}[21458,21469,21470,21484,21496,21497]\right]$;

UPDATE I did a "quick" search for bad polys of the form $(x+m)^{*}\left(x^{\wedge} 2+1\right)^{*}\left(n 1^{*} x^{\wedge} 3+n 2\right)$ but found none (for $m=11, . ., 20, n 1=1, . ., 10$ and $\left.n 2=1, . ., 250000\right)$

\#8-24 Apr 2020 20:43 - John Abbott

- Status changed from In Progress to Resolved
- \% Done changed from 40 to 70

I has disabled the dodgy looking short-cut, and now several tests (incl. the original example) have worked just fine.
I guess that ancient factorizer code needs to be brought up to date... sigh!

\#9-25 Apr 2020 14:31 - John Abbott

- Status changed from Resolved to Feedback
- \% Done changed from 70 to 90
- Estimated time set to 5.55 h

I have done some ad hoc testing; seems OK.
Checked in; incr version number of CoCoALib (CoCoA-5 too)
ANNA: Could you check on you machine? Thanks.

\#10-26 Apr 2020 19:43- John Abbott

Added test to exbugs.cocoa5.

\#11-26 Apr 2020 19:57-John Abbott

- Estimated time changed from 5.55 h to 5.99 h

Added test to src/tests/test-bug1.C

\#12-29 Apr 2020 12:43-John Abbott

- Related to Support \#1338: Release CoCoALib-0.99700 added

\#13-29 Apr 2020 12:43-John Abbott

- Target version changed from CoCoALib-0.99800 to CoCoALib-0.99700

\#14-30 Apr 2020 14:19-Redmine Admin

- Target version changed from CoCoALib-0.99700 to CoCoALib-0.99710
\#15-20 May 2020 13:26 - John Abbott
- Status changed from Feedback to Closed
- \% Done changed from 90 to 100

