
CoCoA-5 - Feature #1431

Juxtaposition of string literals

03 Mar 2020 15:08 - John Abbott

Status: Rejected Start date: 03 Mar 2020

Priority: Normal Due date:

Assignee: John Abbott % Done: 100%

Category: CoCoA-5 function: new Estimated time: 1.99 hour

Target version: CoCoA-5.4.0 Spent time: 1.90 hour

Description

We used to allow this, but then disallowed it in issue #576.

I raise it again because Martin Kreuzer wants to have some old CoCoA-4 packages transferred to CoCoA-5.

Those old packages tended to have a function called Man which printed out a very long, multi-line string.

This can be seen in the revitalized package thmproving.

Juxtaposing strings may help here. Discuss!

Reactivation appears to be a trivial matter of uncommenting the commented out code.

Related issues:

Related to CoCoA-5 - Design #576: Disallow juxtaposition for string literals? Closed 25 Jun 2014

Related to CoCoA-5 - Feature #781: Option to "fold" long lines? Closed 28 Sep 2015

Related to CoCoA-5 - Slug #1363: Emacs UI: slow with long lines In Progress 13 Nov 2019

Related to CoCoA-5 - Feature #1587: Multiline string literals (again) Closed 02 Apr 2021

Related to CoCoA-5 - Feature #1599: ConcatStr Closed 12 Jun 2021

History

#1 - 03 Mar 2020 15:14 - John Abbott

The soln in thmproving.cpkg5 was to have a long succession of PrintLn commands:

 PrintLn "DESCRIPTION";

 PrintLn "";

 PrintLn "Given a putative theorem in Euclidean geometry, we introduce Cartesian";

 PrintLn "coordinates in the Euclidean plane, and translate the hypotheses and the...";

But in CoCoA-4 it was permitted to have newlines inside strings (more a curse than a mixed blessing).

With concatenation by juxtaposition, we could have something like:

 PrintLn "DESCRIPTION\n"

 "\n"

 "Given a putative theorem in Euclidean geometry, we introduce Cartesian\n"

 "coordinates in the Euclidean plane, and translate the hypotheses and the...";

Is this a good idea?

I did also on one occasion actually want to have a long string literal... forgotten precisely why.

UPDATE I think I wanted to read in a large polynomial (e.g. 1Mbyte long), and it was inconvenient in Emacs to have such a long line (because

Emacs becomes slow with long lines).

29 Apr 2024 1/3

https://cocoa.dima.unige.it/redmine/issues/576

#2 - 03 Mar 2020 15:30 - John Abbott

- Related to Design #576: Disallow juxtaposition for string literals? added

#3 - 03 Mar 2020 17:29 - John Abbott

The relevant source code is around line 2100 in Parser.C, in the function Parser::parsePrimary.

#4 - 04 Mar 2020 15:33 - John Abbott

- Related to Feature #781: Option to "fold" long lines? added

#5 - 04 Mar 2020 21:15 - John Abbott

- Related to Slug #1363: Emacs UI: slow with long lines added

#6 - 19 Mar 2021 15:06 - John Abbott

Another possible justification for wanting to re-allow string literal juxtaposition is that we now have a fold function which can break a long string into

pieces separated by newlines. The juxtaposition trick would make it easier to read in such a split string.

Why did I write in comment 1 that this is a "curse"? What problems does it cause?

I suppose a user could make the mistake to forget a comma after a string literal in a list of string literals then CoCoA will silently concatenate the

literals.

Here is an example:

L := ["one" "two", "three"];

Or maybe string literal concatenation could be achieved by a special operator symbol? If so, what? (maybe &, ampersand)

Comments, ideas, suggestions?

#7 - 02 Apr 2021 10:59 - John Abbott

- Related to Feature #1587: Multiline string literals (again) added

#8 - 02 Apr 2021 11:24 - John Abbott

- Status changed from New to In Progress

- % Done changed from 0 to 10

A potential disadvantage of something like "abc"+"def"+"ghi" is that a naive impl will take quadratic time. I suppose we could do geobuckets for

string concatenation ;-)

The example in comment 6 with a "typo" (missing comma) does rather discourage allowing juxtaposition (but several other computer languages allow

it, presumably without causing too much trouble for new programmers). Requiring an explicit operator would avoid that problem, but does involve

delving to the parser... mmmm.

We could re-enable multi-line string literals... I'll create a new issue (#1587) to discuss this

29 Apr 2024 2/3

https://cocoa.dima.unige.it/redmine/issues/1587

#9 - 05 Apr 2021 12:53 - John Abbott

- Assignee set to John Abbott

I have just looked at the source code (Parser.C around lines 2135--2150); the old code for juxtaposed strings is still there. I do not really understand

how it worked.

Presumably the interpreter knows how to "read" what the parser produced (see Interpreter.C around line 3250; search for stringliteral).

As suggested in #1587#note-5 I have implemented a new fn ConcatStr (not sure that that name is the best).

Repeating the example given in that note, but using ConcatStr instead of sum took about 0.12s; so about 1000 times faster.

That is acceptably fast.

An advantage of a fn such as ConcatStr is that it can be called on lists created at run-time, in contrast to a "smart" way of concatenating string

literals.

#10 - 19 Apr 2021 13:55 - John Abbott

Another point in favour of ConcatStr is that it could insert newlines between the strings in a list, rather than requiring that the user put in \n explicitly at

the end of each string.

println "First line\n"

 "second line\n" "last line";

println ConcatStrWithNewlines(

 ["First line",

 "second line", "last line"]);

#11 - 12 Jun 2021 15:04 - John Abbott

- Related to Feature #1599: ConcatStr added

#12 - 14 Sep 2021 11:45 - John Abbott

- Status changed from In Progress to Rejected

- % Done changed from 10 to 100

- Estimated time set to 1.99 h

Given the example in comment 6 (above), and the fact that ConcatStrings is now quite fast. We have decided to reject this issue.

Powered by TCPDF (www.tcpdf.org)

29 Apr 2024 3/3

https://cocoa.dima.unige.it/redmine/issues/1587#note-5
http://www.tcpdf.org

