CoCoALib - Slug \#1324

Improve RootBound

30 Sep 2019 19:40 - John Abbott

Status:	In Progress	Start date:	30 Sep 2019
Priority:	Normal		
Assignee:		Due date:	
\% Done:	10%		
Category:	Improving	CoCoALib-1.0	
Target version:	Spent time:	1.00 hour	
Description			
It maybe possible to improve RootBound (in some cases) by using SqfreeFactor.			
Also the CoCoA-5 prototype GoodShiftForRootBound should be translated into C++.			

History

\#1-30 Sep 2019 19:42 - John Abbott
CAREFUL with the suggestions below: it is likely the RootBound is used internally when factorizing or computing sqfr factors.
If we can obtain quickly a factorization of f then RootBound (f) is just max of the RootBound for each factor.
I think that SqfreeFactor should be a good candidate for being quick enough.
It would be nice to have the GoodShiftForRootBound in C++; what name should it have? And what result should it give?
Result could be the shift (Biglnt) and the improved root bound (BigRat); should there also be the shifted poly?

\#2-30 Oct 2019 21:44-John Abbott

- Status changed from New to In Progress
- \% Done changed from 0 to 10

Here is a family of examples where factorization may not work so well:
let f be a product of $x^{\wedge} k-1$ where the k values are chosen so that CoeffHeight(f) is small (e.g. 1). Sqfr factorization will then give a high power of $x-1$ and a factor with large coeffs.

I did try a couple of examples: there was some penalty, but it was much less than expected.
Anyway, one could take min of RootBound(f) and max([RootBound(fac) | fac in SqfreeFactor(f).factors]). Though this is obviously more costly than just computing RootBound(f).

Perhaps the sqfr factors can be used only if they "small" compared to the original poly?

