
CoCoA-5 - Feature #131

Conversion from bool to INT

16 Apr 2012 16:36 - John Abbott

Status: Closed Start date: 16 Apr 2012

Priority: Normal Due date:

Assignee: John Abbott % Done: 100%

Category: CoCoA-5 function: new Estimated time: 0.00 hour

Target version: CoCoA-5.0.3 Spent time: 2.45 hours

Description

Alessio would like a conversion from {false,true} to {0,1}.

Wikipedia mentions a function called "Iverson bracket" which does

just that, but its syntax is not suitable for us.

Do we wabt such a function? What should it be called?

Should it be automatic?

History

#1 - 18 Apr 2012 15:46 - John Abbott

Re Automatic conversion:

Advantages: no need to choose a name, compactness

Disadvantages: possible ambiguity, unsafe for incautious users, perhaps hard to comprehend

Clearly 1+N>0 is quite different from 1+(N>0).

Would we allow an expression like (N>0)+(M>0) ?

The meaning of (N>0)>(M>0) is clear.

The meaning of (N>0)>M is fairly clear.

What about the expression N>0>M -- maybe it should be forbidden, or it should produce a warning? After all what would you expect 0<i<N to mean?

#2 - 18 Apr 2012 15:58 - John Abbott

We cannot use the Iverson bracket syntax directly because it already has a meaning: [N>0] will produce a list containing a single boolean value.

We could use something similar though. I am thinking of ?[...] or perhaps [?...]. We would presumbaly have to define ?[as a lexeme, unless we

wanted to have ? as a unary operator.

The use of ? appeals to me; moreover it is an available character (except at the very start of a command).

I also think that using a "bracket syntax" should avoid complications similar to those I raised in my previous posting.

#3 - 21 May 2012 11:48 - John Abbott

Though I didn't say so explicitly previously, I believe that a truly automatic conversion from BOOL to INT is likely to cause more trouble than it's

10 Apr 2024 1/3

worth.

I recall that C and C++ have their own approach, via the ?: operator pair. The advantage of the C style syntax is that one can express very easily "if

cond is true then give value A otherwise give value B". Just for clarity the C++ code would be cond?A:B. Note that we cannot employ the same

identical syntax because : already has a definition in CoCoA language.

Using the syntax proposed in my previous post one would have to write B + (A-B)*[?cond] which is certainly not as clear as the C++ version --

however, in my experience, it is very easy to write unreadable expressions using the C++ syntax.

I note that in the whole of the CoCoALib source we have used the C++ ? operator about 20 times (and 7 of these are in PPMonoidEvZZ.C). So my

personal experience is rather limited.

In summary do we prefer to have a fixed mapping from BOOL to INT (surely false -> 0 and true -> 1)? Or do we prefer a C/C++ approach where the

programmer must specify each time the two values?

Right now I do not have a proposal for the syntax of a C++-like selector; it may be possible to devise an "extensible" syntax which can be used to

offer both approaches -- or would that be overkill?

#4 - 21 May 2012 15:54 - Anna Maria Bigatti

- Category set to CoCoA-5 function: new

I don't like an automatic conversion.

We could write a conversion function Bool01 (the shortest name I could think of) doing it.

#5 - 25 May 2012 11:41 - John Abbott

- Status changed from New to In Progress

- % Done changed from 0 to 80

After speaking to Anna about the various possibilities, she convinced me that the simplest approach is best (at least as a first attempt). So I approve

the idea of writing a fn Bool01 which effects the conversion.

At some later date, if there is evidence of need for a better integrated conversion scheme, we can reconsider some of my musings from earlier

postings. Given how rarely we have used the C++ construct in the CoCoALib sources, it seems likely that Bool01 will not be used much.

#6 - 25 May 2012 14:17 - John Abbott

- Status changed from In Progress to Closed

- % Done changed from 80 to 100

Implemented Bool01 in the package NotBuiltin.cpkg5.

The fn Error (with capital E) is now built-in rather than defined in BackwardCompatible.cpkg5 -- this makes error mesgs (provoked by Error) easier to

understand.

Also made small mods to some other impls in the BackwardCompatible.cpkg5.

Added doc for Bool01.

10 Apr 2024 2/3

#7 - 04 Jul 2012 09:59 - Anna Maria Bigatti

- Assignee set to John Abbott

- Target version set to CoCoA-5.0.3

Powered by TCPDF (www.tcpdf.org)

10 Apr 2024 3/3

http://www.tcpdf.org

