CoCoA-5 - Feature \#1271
Allow Interruption of printing?
16 Apr 2019 17:43 - John Abbott

Status:	In Progress	Start date:	16 A	
Priority:	Normal	Due date:		
Assignee:		\% Done:	10\%	
Category:	enhancing/improving	Estimated time:	0.00	
Target version:	CoCoA-5.?.?	Spent time:	0.80	
Description				
Inside emacs, if you print out a very long list then it takes ages before you can use emacs/CoCoA-5 again.				
Consider allowing interruption of printing (at least for potentially large objects).				
Related issues:				
Related to CoCoA-5 - Design \#610: Variable It: assign before or after printing			New	02 Sep 2014

History

\#1-16 Apr 2019 17:49-John Abbott
I have a tried a first approach, but it did no work as I would have liked...
What I tried:

- in Interpreter.C around line 2453
- inserted CoCoA::CheckForInterrupt("Printing LIST");
- effect: interrupt was recognized, and stopped printing, but resulted in a "catastrophic error" (process exited with code 1) after printing ***ERROR*** UNCAUGHT UNKNOWN EXCEPTION
- printed error seems to have come from Main.C around line 354

Not sure why the exception was not caught.

\#2-17 Apr 2019 08:26-Anna Maria Bigatti

I agree this would be very useful.
Strange for the error!

\#3-17 Apr 2019 10:17-John Abbott

- Description updated
- Status changed from New to In Progress
- \% Done changed from 0 to 10

Which printing commands should allow themselves to be interrupted?

- lists
- matrices
- ideals (?)

I think probably not polynomials (nor very large integers):

- for large integers it would be tricky because they are internally converted to a string, which is then printed with a single C++ fn call
- for polynomials we could perhaps check for interrupts between printing terms, but I am concerned that too many checks for interrupts might have
a perceptible impact on speed (though the checks should be quite cheap); also note that polynomials can have a "recursive structure".
I had thought about checking for interrupts, say, every 100 terms in a poly. But then it is possible to create a large recursive polynomial where no check is made: consider $\left(1+x+x^{\wedge} 2+\ldots+x^{\wedge} 99\right)^{*}\left(1+y+y^{\wedge} 2+\ldots+y^{\wedge} 99\right)^{*}\left(1+z+z^{\wedge} 2+\ldots+z^{\wedge} 99\right)$ in the ring $Q Q[x][y][z]$.

\#4 - 04 Mar 2020 22:23 - John Abbott

- Related to Design \#610: Variable It: assign before or after printing added

