
CoCoA-5 - Slug #1270

RationalSolve: use MinPolyQuot instead of elim

05 Apr 2019 20:19 - John Abbott

Status: Closed Start date: 05 Apr 2019

Priority: Normal Due date:  

Assignee: John Abbott % Done: 100%

Category: enhancing/improving Estimated time: 0.99 hour

Target version: CoCoA-5.4.0 Spent time: 0.95 hour

Description

Currently RationalSolve uses elim, but every use is equivalent to a call to MinPolyQuot (in the subring generated by the indets

actually appearing).

Update the code; maybe also translate it into C++?

Related issues:

Related to CoCoA-5 - Bug #724: RationalSolve: wrongly complains about non zer... Closed 02 Jun 2015

Related to CoCoALib - Slug #777: SLUG: elimination In Progress 15 Sep 2015

History

#1 - 05 Apr 2019 20:19 - John Abbott

- Related to Bug #724: RationalSolve: wrongly complains about non zero-dim even in finite char added

#2 - 05 Apr 2019 20:56 - John Abbott

Before we decide to replace elim by MinPolyQuot we should check that MinPolyQuot is usually faster (I would certainly expect it to be faster).

There is a slightly tricky aspect: the implementation works by "eliminating" indets one at a time; so a recursive call is with a set of polynomials which

define a 0-dim ideal in a subring (because we substitute for the indet rather than leaving a linear generator).

#3 - 01 Oct 2019 14:28 - John Abbott

- Target version changed from CoCoA-5.3.0 to CoCoA-5.4.0

#4 - 03 Oct 2019 17:24 - Anna Maria Bigatti

- Related to Slug #777: SLUG: elimination added

#5 - 21 Oct 2019 23:00 - John Abbott

- Status changed from New to In Progress

- % Done changed from 0 to 10

Here is an example which shows that RationalSolve can be unreasonably slow:

use P ::= ZZ/(32003)[x,y,z];

use P ::= QQ[x,y,z];

X := indets(P);

S := support((1+sum(X))^3);  --> deg = 3

define rndpoly(S)

  return sum([random(-9,9)*t | t in S]);

enddefine; -- rndpoly

L := [rndpoly(S) | i in 1..3];

I := ideal(L);

//SetVerbosityLevel(100);

28 Apr 2024 1/3



println "=======================================================";

println "ReducedGBasis";

println "=======================================================";

t0 := CpuTime();

RGB := ReducedGBasis(I);

println "RGB TIME ", TimeFrom(t0); println; println;

J := ideal(L);

println "=======================================================";

println "MinPolyQuot";

println "=======================================================";

t0 := CpuTime();

mu := MinPolyQuot(x,J,x);

println "MPQ TIME ", TimeFrom(t0); println; println;

println "=======================================================";

println "ApproxSolve";

println "=======================================================";

t0:=CpuTime();

solns:=ApproxSolve(L);

println "ApproxSolve TIME ", TimeFrom(t0); println; println;

println "=======================================================";

println "RationalSolve";

println "=======================================================";

t0 := CpuTime();

RationalSolve(L);

println "RatSolve TIME ", TimeFrom(t0); println; println;

 

On my computer, typical timings are about RGB 0.04,  MPQ 0.08,  ApproxSolve 1.0,  RatSolve  2.1.

Increasing deg to 4 makes RationalSolve unreasonably slow:  RGB 0.06,  MPQ 1.2,  ApproxSolve 22,  RatSolve 2250

#6 - 12 Feb 2021 11:54 - John Abbott

- Status changed from In Progress to Feedback

- Assignee set to John Abbott

- % Done changed from 10 to 90

28 Apr 2024 2/3



- Estimated time set to 0.99 h

I have just tried the example from comment 5, and RationalSolve is now tolerably fast (less than 2s).

#7 - 16 Sep 2021 12:40 - Anna Maria Bigatti

- Status changed from Feedback to Closed

- % Done changed from 90 to 100

tested on Mac, ~0.1s

Powered by TCPDF (www.tcpdf.org)

28 Apr 2024 3/3

http://www.tcpdf.org

