CoCoA-5 - Bug \#1191
ApproxSolve: $\log (0)$ on some examples
19 Jun 2018 16:15 - John Abbott

Status:	Closed	Start date:	19 Jun 2018
Priority:	High	Due date:	
Assignee:	John Abbott	\% Done:	100\%
Category:	bug	Estimated time:	0.77 hour
Target version:	CoCoA-5.2.4	Spent time:	0.80 hour
Description The following input attempts to compute $\log (0)$.			
use $Q Q[x, y, z]$; $\mathrm{L}:=\left[y^{\wedge} 3+x^{\star} z^{\wedge} 2, \quad 2 \star x^{\wedge} 2 \star y-4^{\star} x^{\star} z^{\wedge} 2+3 * x^{\star} y, \quad 2 * x^{\wedge} 3+x^{\wedge} 2^{\star} y-2 \star z^{\wedge} 3\right]$; -- zero dim! ApproxSolve(L);			

History

\#1-19 Jun 2018 16:17-John Abbott

- Status changed from New to In Progress
- \% Done changed from 0 to 10

Something odd must have happened: ApproxSolve is failing on almost trivial examples.
Here are some simpler failing examples:


```
ideal(-x^2 +3***y -y, -3* y^2 +x)
```

Maybe there is a problem when $(0,0)$ is a solution?

\#2-19 Jun 2018 16:25-John Abbott

It even fails in a univariate case... $-3^{*} x^{\wedge} 2+2^{*} x$. Investigating...

\#3-19 Jun 2018 16:32 - John Abbott

Here is a surprise:

RealRoots(x); --> gives error log(0)

Ulrich has the version from Jan 2018, and his works...
So I must have made a recent change... sigh!

\#4 - 19 Jun 2018 16:46 - John Abbott

- Status changed from In Progress to Feedback
- Assignee set to John Abbott
- \% Done changed from 10 to 90

The problem was caused by a new better impl of RootBound which can return zero (if arg is just x); the old RootBound could not do this.
Fixed.

\#5-26 Jul 2018 13:59-John Abbott

- Status changed from Feedback to Closed
- \% Done changed from 90 to 100
- Estimated time set to 0.77 h

Closing

