CoCoALib - Feature \#1173
Upper bound for value of poly in an interval
04 Apr 2018 11:49-John Abbott

| Status: | New | Start date: | 04 Apr 2018 |  |
| :---: | :---: | :---: | :---: | :---: |
| Priority: | Normal | Due date: |  |  |
| Assignee: |  | \% Done: | 0\% |  |
| Category: | New Function | Estimated time: | 0.00 hour |  |
| Target version: | CoCoALib-1.0 | Spent time: | 1.00 hour |  |
| Description |  |  |  |  |
| Write a function which accepts a (univariate) polynomial $\mathbf{f}$ (with rational coeffs), and an interval [a,b] with rational end points; the functions returns a rational which is an upper bound for $\max (\mathbf{f}(\mathbf{x}) \mid \mathbf{x}$ in $[\mathbf{a}, \mathbf{b}])$ and perhaps also a lower bound for $\boldsymbol{\operatorname { m i n }}(\mathbf{f}(\mathbf{x}) \mid \mathbf{x}$ in [a,b]). |  |  |  |  |
| Related issues: |  |  |  |  |
| Related to CoCoA-5-Bug \#1171: RealRoots: first point is sometimes wrong? |  |  | Closed | 03 Apr 2018 |
| Related to CoCoALib - Feature \#1176: interval arithmetic |  |  | In Progress | 05 Apr 2018 |

## History

\#1-04 Apr 2018 11:49-John Abbott

- Related to Bug \#1171: RealRoots: first point is sometimes wrong? added


## \#2-04 Apr 2018 11:52-John Abbott

A while ago I read an article about this (perhaps "evaluating a polynomial over an interval"?). I no longer recall many details.
The main idea is to repeatedly subdivide the interval (not necessarily evenly), and recurse on the two "halves", then combine the results. The base case uses "Horner's algorithm" for intervals.

JAA believes that this could also be useful/interesting for the SC-Square project.
\#3-04 Apr 2018 11:55-John Abbott

- Description updated
\#4-05 Apr 2018 13:41-John Abbott
- Related to Feature \#1176: interval arithmetic added

