
CoCoA-5 - Bug #110

Surprise return type for GCD of a list of ints

19 Mar 2012 16:19 - John Abbott

Status: Closed Start date: 19 Mar 2012

Priority: Normal Due date:

Assignee: John Abbott % Done: 100%

Category: CoCoA-4 function to be added Estimated time: 15.00 hours

Target version: CoCoA-5.0.3 Spent time: 11.50 hours

Description

JAA expected GCD of a list of INTs to produce an INT; instead it produces a RINGELEM (in ZZ)

N := gcd([2,4,6]);

Type(N); --> RINGELEM

RingOf(N); --> ZZ

The behaviour comes from the fact that gcd uses the same code as is used for reading matrix elements which always produces a list

of RINGELEMs (in ZZ or QQ if all entries are ringless).

Anna also asked what result I would expect if the list contained some RAT values (all of whose denominators are 1). It seems rather

hard to justify giving an INT as the result in that case.

A possible solution could be to have a separate function (i.e. different name) for computing GCDs of INTs (which could auto-convert

a RAT with denom=1 into an INT).

The hard part will probably be decising what strategy to adopt; implementation will likely be simple(-ish) but tedious.

Related issues:

Related to CoCoA-5 - Bug #158: May AsRAT produce an INT? Closed 14 May 2012

History

#1 - 19 Mar 2012 16:45 - John Abbott

The function AsINT can be used as a workaround:

L := [2,4,6];

N := AsINT(gcd(L));

Type(N); --> INT

#2 - 14 May 2012 12:14 - John Abbott

Today some students passed with a CoCoA-5 problem which derived from the unexpected return type of gcd applied to a list of INT.

JAA suggests that gcd of list of INT give result INT (non-negative); if there is any RAT in the list then an error is produced.

#3 - 14 May 2012 12:23 - John Abbott

JAA proposes that reading of homogeneous lists have three possible return types:

list of INT

list of RAT

17 Apr 2024 1/6

list of RINGELEM (with the guarantee that all elements are in the same ring)

Not sure what the empty list should give; probably either error or list of INT (because INT is always convertible into any of the other types).

It is not entirely clear how best to achieve this in C++ since functions have to have a fixed return type.

#4 - 14 May 2012 14:06 - John Abbott

JAA thinks that introducing a separate name for the function for computing GCD of integers is a bad idea because it places an extra (unnecessary?)

burden on the user.

#5 - 14 May 2012 15:03 - John Abbott

Anna thinks she can fix the reading of homogeneous lists; she will look into it in the next few days.

#6 - 15 May 2012 15:32 - Anna Maria Bigatti

- Category set to CoCoA-4 function to be added

- Status changed from New to Resolved

- Assignee set to John Abbott

- Target version set to CoCoA-5.0.3

- % Done changed from 0 to 60

#7 - 15 May 2012 16:17 - Anna Maria Bigatti

- % Done changed from 60 to 100

The code now works: type(gcd([2,3,4]) is of type INT.

Also lcm has been fixed accordingly.

It does not seem that there are other functions taking list of INT or list RingElem as argument.

Still to be fixed: rational input

/**/ lcm(1,x);

ERROR: Expecting type INT, but found type RINGELEM

lcm(1,x);

 ^

#8 - 15 May 2012 16:17 - Anna Maria Bigatti

- % Done changed from 100 to 80

#9 - 15 May 2012 16:52 - Anna Maria Bigatti

In CoCoALib we have the function myGcdInField, so we can compute gcd of elements in RingQQ. So, what shouldwe do in CoCoA-5?

#10 - 16 May 2012 15:01 - John Abbott

17 Apr 2024 2/6

JAA modified RingBase::myGcdInField to give error rather than produce a result of 0/1. All CoCoALib tests passed, but the SourceAnna test in

CoCoA-5 failed because it explicitly tests gcd between two elements of QQ.

Mathematically a field is a GCD domain. However I cannot think of a situation where it would be correct and convenient to compute a GCD in a field.

If the field is a fraction field then at times it would be handy to consider its elements as elements of the base ring (e.g. think of computing the "content"

of a polynomial in QQ[x] which actually lies in the natural image of ZZ[x]) but then the 0-or-1 definition of GCD does not produce the desired result.

Maybe we could define gcd in a special way in fraction fields; but frankly, this seems to be a recipe for confusion!

However, if we regard fields as not "gcd domains" then what name should be use to mean "gcd domain but not a field"? TrueGCDDomain,

ProperGCDDomain, GCDRing (with the implication that "ring" means "not field") It would be nice to have a short and unambiguous name.

#11 - 16 May 2012 15:31 - John Abbott

There is one other imstance where myGCDInField is called.

ex-RingElem1 attempts to compute a GCD in a field (after having checked that it satisfies IsGCDDomain).

#12 - 16 May 2012 15:36 - John Abbott

JAA thinks that

we can compute GCDs between values of type RAT

should be equivalent to

we can compute GCDs between RINGELEM values in QQ

At the moment JAA thinks the answer should be "no" in both cases, but is willing to listen to other opinions.

#13 - 16 May 2012 16:15 - Anna Maria Bigatti

JAA thinks that

we can compute GCDs between values of type RAT

should be equivalent to

we can compute GCDs between RINGELEM values in QQ

At the moment JAA thinks the answer should be "no" in both cases, but is willing to listen to other opinions.

I agree.

17 Apr 2024 3/6

I think that myGCDInField was written for printing simplified polys like

/**/ R ::= QQ[a,b];

/**/ K := NewFractionField(R);

/**/ Use P ::= K[x,y];

/**/ (3*a)*x/3;

a*x

.... or not?

#14 - 16 May 2012 18:20 - John Abbott

JAA believes that myGcdInField was created for the following reason.

In CoCoALib fields satisfy IsGCDDomain because mathematically this is true; this means that CoCoALib must be capable of computing gcds of

elements from a field. Thus I implemented for each field the almost trivial function for computing gcds in fields. Later I realized that all these separate

imlementations were essentially identical; so I "moved them up" to a common definition in RingBase::myGcdInField. Note that this member function

is protected because it was intended to be accessible only in concrete ring implementations. In fact a quick "grep" reveals that it is called only from

inside the implementations of myGcd in concrete ring classes which implement fields.

If we decide to forbid computing gcds of elements in a field then the function RingBase::myGcdInField can be removed (or replaced by a fn which

simply gives a "cannot compute GCD in field" error).

Note that in a QuotientRing it can be determined only at run-time whether the ring is actually a field.

#15 - 17 May 2012 17:33 - Anna Maria Bigatti

John Abbott wrote:

However, if we regard fields as not "gcd domains" then what name should be use to mean "gcd domain but not a field"? TrueGCDDomain,

ProperGCDDomain, GCDRing (with the implication that "ring" means "not field") It would be nice to have a short and unambiguous name.

Another suggestion: IsValidGCDDomain (by L.Robbiano)

#16 - 17 May 2012 18:12 - John Abbott

Anna Maria Bigatti wrote:

Another suggestion: IsValidGCDDomain (by L.Robbiano)

17 Apr 2024 4/6

I'm not very convinced; I'd prefer IsTrueGCDDomain.

Another suggestion is IsNontrivGCDDomain (where Nontriv stands for non-trivial) -- it's very precise, but rather cumbersome.

Almost all our suggestions are rather long; perhaps this does not matter so much? Maybe we should just choose one, and possibly change it later if it

turns out to be too cumbersome/unreadable/...?

#17 - 17 May 2012 18:32 - Anna Maria Bigatti

Almost all our suggestions are rather long; perhaps this does not matter so much? Maybe we should just choose one, and possibly change it

later if it turns out to be too cumbersome/unreadable/...?

So the best is IsTrueGCDDomain it is the shortest of the type Is***GCDDomain (and I think we should stick to GCDDomain)

#18 - 17 May 2012 21:41 - John Abbott

Anna Maria Bigatti wrote:

So the best is IsTrueGCDDomain it is the shortest of the type Is***GCDDomain (and I think we should stick to GCDDomain)

Is that choice OK with Robbiano too?

That name has the advantage that it is compatible with an error symbol that I had already defined (if you recall...)

Here's another candidate (long but very clear) IsGCDDomainNotField

#19 - 28 May 2012 11:57 - John Abbott

- Status changed from Resolved to Closed

- % Done changed from 80 to 100

Implemented IsTrueGCDDomain; the main cost was sorting out the consequential changes. Eliminated ERR::NotGCDDomain; its function is now

subsumed by ERR::NotTrueGCDDomain (which already existed).

I opted for a default definition (in ring.C) of "not is a field".

Changed the documentation.

17 Apr 2024 5/6

#20 - 09 Nov 2015 15:32 - John Abbott

- Subject changed from Surprise return type for GCD fo a list of ints to Surprise return type for GCD of a list of ints

Powered by TCPDF (www.tcpdf.org)

17 Apr 2024 6/6

http://www.tcpdf.org

