"My Little Project with CoCoALib"

Anna M. Bigatti, Genova, Italy
February 2017, Kassel

- an algorithm in a paper
- a mathematical conjecture
- a new idea
- .. or just homework ;-)

Example 1

"My project" is quite a difficult example:

Computing primary decomposition of 0-dimensional ideals

- Already implemented it in CoCoA-5 (PhD thesis E. Palezzato)
- My project today it to translate it into CoCoALib.

Bibliography:
M.Kreuzer-L.Robbiano book: Computational Linear and Commutative Algebra E.Palezzato PhD Thesis: Minimal Polynomial, Sectional Matrix, and Applications

Paper Abb+Big+Palezzato+Robbiano: Computing and Using Minimal Polynomials

First steps on the project

© Sketch on PAPER!

(2) Compute easy examples by hand, following the algorithm
(Compute harder example by "reverse engineering"
(응 Identify the important objects and steps

Example 2

(1) Difficult phase: for my project already done :)
(2) Given $I=\left\langle x^{2}-4, y-1\right\rangle$. Choose $f=x+y$.

Let $\mu(z)=\operatorname{MinPolyQuot}(f, I)=z^{2}-2 z-3$
(i.e. $\mu(f) \in I$ of \min deg) and factorize it $(z+1)(z-3)$.

Let $Q_{1}=I+\langle f+1\rangle$ and $Q_{2}=I+\langle f-3\rangle$: then $I=Q_{1} \cap Q_{2}$
(3) $Q_{1}=\langle x, y-1\rangle^{2}, Q_{2}=\left\langle x-3, y^{2}+1\right\rangle, Q_{3}=\langle x, y\rangle$. Let $I=Q_{1} \cap Q_{2} \cap Q_{3}!!$
(4) input ideal, output vector<ideal>.

Choosing a polynomial, MinPolyQuot, factor,...

First steps on the computer

- Start by a meaningful example "step-by-step"
(2) Understand which types you need:

Biglnt, BigRat, ring, RingElem, ideal, list/vector, ..
(You probably do not need to make a new class)
(3) Understand which functions you need
(ㄷ. Make a simple prototype (in CoCoA-5 or CoCoALib)

Example 3

(1) Meaningful example "step-by-step" (ex-PrimaryDecomposition0Dim)
(2) ring, RingElem, ideal, vector<RingElem>,
factorization<RingElem>, RingHom, ...
(3) MinPolyQuot, factor, ...
(4) (there is an excellent prototype in CoCoA-5...)

First steps on the computer

- Start by a meaningful example "step-by-step"
(2) Understand which types you need:

Biglnt, BigRat, ring, RingElem, ideal, list/vector, ..
(You probably do not need to make a new class)
(3) Understand which functions you need
(ㄷ. Make a simple prototype (in CoCoA-5 or CoCoALib)

Example 3

(1) Meaningful example "step-by-step" (ex-PrimaryDecomposition0Dim)
(2) ring, RingElem, ideal, vector<RingElem>,
factorization<RingElem>, RingHom, ...
(3) MinPolyQuot, factor, ...
(4) (there is an excellent prototype in CoCoA-5...)

On paper work "top-down":
 start with the big picture and identify the "logical blocks"

On computer work "bottom-up":
Make the basic functions (the "logical blocks") and test each of them

Print, print print!! (Use "verbosity")

Example 4

- PrimaryDecomposition (I don't complete this today)
- IsPrimaryODim (maximal.cpkg5)
- RndLinForm
(ex-IsPrimaryOdim)

On paper work "top-down":
 start with the big picture and identify the "logical blocks"

On computer work "bottom-up":
Make the basic functions (the "logical blocks") and test each of them

Print, print print!! (Use "verbosity")

Example 4

- PrimaryDecomposition (I don't complete this today)
- IsPrimaryODim (maximal.cpkg5)
- RndLinForm
(ex-IsPrimary0dim)

On paper work "top-down":
 start with the big picture and identify the "logical blocks"

On computer work "bottom-up":
Make the basic functions (the "logical blocks") and test each of them

Print, print print!! (Use "verbosity")

Example 4

- PrimaryDecomposition (I don't complete this today)
- IsPrimaryODim (maximal.cpkg5)
- RndLinForm
(ex-IsPrimary0dim)

