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1. Introduction

This is a summary of the fifth tutorial handed out at the CoCoA
summer school 2005. We discuss the so-called deficiency module for
projective curves. In particular, we provide the necessary CoCoA (ver-
sion 4.6) codes for implementation. We thank Holger Brenner, Martin
Kreuzer and Juan Migliore for helpful discussions.

Let K be a field and P := K[x0, . . . , xn] be a polynomial algebra
equipped with the standard grading. By m := (x0, . . . , xn) we denote
the graded maximal ideal. Moreover, by IC ⊂ P we denote a homoge-
neous ideal defining a curve C ⊂ Pn = Pn

K = ProjP and let R := P/IC

be the coordinate ring of C. Throughout this article we assume that
all ideals defining a projective subscheme are saturated, i.e.

I = Isat = {f ∈ P |mt · f ⊂ I for some t > 0}.
This can be checked with CoCoA, for example, with the function
Define IsSaturated(I)
M:=Ideal(Indets());

Return Saturation(I,M)=I;
EndDefine;

Definition 1.1. The deficiency module or Hartshorne-Rao module of
a curve C ⊂ Pn is the graded P -module

M(C) :=
⊕

t∈Z
H1(Pn, IC(t)),

where IC = ĨC is the ideal sheaf corresponding to IC .

The deficiency module is also describable as the first local cohomol-
ogy of R = P/IC .
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Proposition 1.2. Let C ⊂ Pn, n ≥ 2, be a curve with coordinate ring
R = P/IC . Then M(C) = H1

m(R).

Proof. From the short exact sequence

0 −→ IC −→ P −→ R −→ 0

we derive the exact sequence in cohomology

H1
m(P ) −→ H1

m(R) −→ H2
m(IC) −→ H2

m(P ).

Since n ≥ 2, we have H1
m(P ) = 0 = H2

m(P ) (cf. [2, Corollary A1.6]).
Therefore, H1

m(R) ∼= H2
m(IC). Now the assertion follows, since

H2
m(IC) =

⊕

t∈Z
H1(Pn, IC(t))

(cf. [2, Corollary A1.12(2)]). ¤
Definition 1.3. A curve C ⊂ Pn is called arithmetically Cohen-Mac-
aulay if its coordinate ring R = P/IC is Cohen-Macaulay, i.e. dimR =
depthR.

We have the following characterization for arithmetic Cohen-Macau-
lay curves utilizing its deficiency module.

Corollary 1.4. Let C ⊂ Pn, n ≥ 2, be a curve. Then C is arithmeti-
cally Cohen-Macaulay if and only if M(C) = 0.

Proof. Let C be arithmetically Cohen-Macaulay. Then we have that
H i

m(R) = 0 for all i < 2, since dimR = depthR = 2. Hence by
Proposition 1.2 we have M(C) = H1

m(R) = 0. On the other hand,
supppose that M(C) = H1

m(R) = 0. Because IC is saturated, H0
m(R) =

0. Since dimR = 2, we have H2
m(R) 6= 0 and H i

m(R) = 0 for all
i > 2. Hence dimR = depthR, i.e. R is Cohen-Macaulay and therefore
C is arithmetically Cohen-Macaulay. (For all the vanishing and non-
vanishing statements cf. [2, Proposition A1.16].) ¤

By using Proposition 1.2 above we can express the deficiency module
of a curve in terms of Ext-modules.

Theorem 1.5. Let C ⊂ Pn, n ≥ 2, be a curve with coordinate ring
R. Then the modules M(C) and HomK(Extn

P (R,P ),K)(n + 1) are
isomorphic as graded P -modules.

Proof. By Proposition 1.2, we have M(C) ∼= H1
m(R). The local duality

Theorem (cf. [2, Theorem A1.9]) yields

H1
m(R) ∼= Extn

P (R, P (−n− 1))∗ = HomK(Extn
P (R, P ),K)(n + 1)
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and proves the claim. ¤
Theorem 1.5 allows a quick computation of the K-dual of M(C)

with CoCoA, using the implemented Ext-package. This is convenient
for most of our computations in this paper. Therefore, we define
the CoCoA-function DeficiencyDual(I) which takes the vanishing
ideal I of a curve C and computes a presentation of the Ext-module
Extn

P (R, P ), where R is the coordinate ring of C:
Define DeficiencyDual(I)
N:=NumIndets()-1;

Return Ext(N,CurrentRing()/I,Ideal(1));
EndDefine;

We now turn to finding a presentation of the K-dual of a P -module
M which is a finite-dimensional K−vector space. Here we follow es-
sentially the explanations in [1]. So let M ∼= P k/N be a presentation
of M and < a module term ordering on P k. Then a K−vector space
basis of M is given by

B := Tn+1〈e1, . . . , ek〉\LT<(N),

where Tn+1〈e1, . . . , ek〉 denotes the set of terms in K[x0, . . . , xn]k and
LT<(N) the leading term module of N with respect to <. For tei ∈ B,
let ϕt,i denote the dual K-linear map, i.e. ϕt,i(tei) = 1 and ϕt,i(v) = 0
for all v ∈ B, v 6= tei. By definition of the P -linear structure on M∗,
we have f ·ϕ : m 7→ ϕ(f ·m) for f ∈ P,ϕ ∈ HomK(M, K) and m ∈ M .
This implies that xj · ϕt,i = 0 if xj - t and xj · ϕt,i = ϕt′,i if xjt

′ = t.
In particular, a minimal system of generators for the K-dual M∗ as a
P−module is given by

E := {ϕt,i : xj · tei ∈ LT<(N) for j = 0, . . . , n}.
Clearly, there are two kinds of relations we have to take into account.

The syzygies involving only one element correspond to the annihilator

AnnP ϕt,i = 〈xb0
0 , · · · , xbn

n 〉
where bi = degxi

(t) + 1. The syzygies involving two elements are gen-
erated by those of the form

t

gcd(t, t′)
ϕt,i − t′

gcd(t, t′)
ϕt′,j = 0

where i = j. Similar to the reasoning in [1, Proposition 5.3], it can
be shown that these syzygies already generate the syzygy module. We
sum up this discussion in the following proposition.
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Proposition 1.6. Let M ∼= P k/N be a finite-dimensional K−vector
space, < a module term ordering on P k and E := {tλ · ei(λ), λ ∈
Λ} a monomial basis for M . Delete the subset {v ∈ E : xj · v ∈
E for some j} to obtain E′ = {vλ, λ ∈ Γ}, Γ ⊆ Λ. Let N ′ ⊆ P r denote
the submodule generated by

x
bj,λ

j vλ, j = 0, . . . , n, λ ∈ Γ

where vλ = tλei(λ) and bj,λ = degxj
(tλ) + 1 and

tλ
gcd(tλ, tγ)

vλ − tγ
gcd(tλ, tγ)

vγ

where i(λ) = i(γ), λ, γ ∈ Γ. Then there is a presentation

HomK(M, K) ∼= P r/N ′.

The implementation in CoCoA of this is somewhat lengthy. We
include it here because the procedures NormalBasis and SocleProj
which compute a K−vector space basis and the minimal generators
come in handy in other instances too.
Define NormalBasis(M,Coord)
G:=Gens(LT(M));
N:=Len(G[1]);
G:=[Vector(Q) | Q In G];
NBasis:=[];
L:=[Comp(List(G[J]),Coord) | J In 1..Len(G)];
IList:=QuotientBasis(Ideal(L));
NBasis:=Concat(NBasis,[Q*E_(Coord,N) | Q In IList]);

Return NBasis;
EndDefine;

Define NormalBasisM(M)
G:=Gens(M);
Nbr:=Len(G[1]);

Return ConcatLists([NormalBasis(M,I) | I In 1..Nbr]);
EndDefine;

Define SocleProj(M,Coord)
NB:=NormalBasis(M,Coord);
For I:=0 To NumIndets()-1 Do

NB:=[Q In NB | Not(IsIn(x[I]*Q,NB))];
EndFor;



THE DEFICIENCY MODULE OF A CURVE AND ITS SUBMODULES 5

Return NB;
EndDefine;

Define SocleProjM(M)
G:=Gens(M);
Nbr:=Len(G[1]);

Return ConcatLists([SocleProj(M,I) | I In 1..Nbr]);
EndDefine;

Define KDual(M)
T:=SocleProjM(M);
Nbr:=Len(T);
N:=NumIndets()-1;
Syz1:=[];
For I:=1 To Nbr Do

Syz1:=Concat(Syz1,[x[A]^(Deg(T[I],
x[A])+1)*E_(I,Nbr) | A In 0..N]);

EndFor;
Syz2:=[];
For I:=1 To Nbr-1 Do

Pos:=FirstNonZeroPos(T[I]);
For J:=I+1 To Nbr Do
If FirstNonZeroPos(T[J])=Pos Then
E1:=FirstNonZero(T[I]); E2:=FirstNonZero(T[J]);
G:=GCD(E1,E2); RIJ:=E1/G; RJI:=E2/G;
Syz2:=Concat(Syz2,[RIJ*E_(I,Nbr)-RJI*E_(J,Nbr)]);

EndIf;
EndFor;

EndFor;
Syz:=Concat(Syz1,Syz2);

Return(Module(Syz));
EndDefine;

In a special case, the following proposition allows an alternative way
to obtain the deficiency module.

Proposition 1.7. Let C ⊂ Pn be a curve which is the disjoint union
of two components C1 and C2 which are both arithmetically Cohen-
Macaulay with vanishing ideals IC1 and IC2 respectively. Then M(C) =
P/(IC1 + IC2) as a graded P -module.



6 GUNTRAM HAINKE AND ALMAR KAID

Proof. Let X := SpecR be the cone of C, let Xi = SpecP/ICi , and
let U,Ui be the corresponding punctured schemes (without the vertex),
i = 1, 2. We consider the short exact sequence

0 −→ Γ(X,OX) −→ Γ(U,OX) −→ H1
m(R) −→ 0

which combines sheaf cohomology and local cohomology (cf. [4, Exer-
cise 2.3(e)]). Since IC1 ∩ IC2 = IC we have the short exact sequence

0 −→ R = P/IC −→ P/IC1 ⊕ P/IC2 −→ P/(IC1 + IC2) −→ 0.

Since Γ(X,OX) = R = P/IC and by assumption

Γ(U,OX) = Γ(U1,OX1)⊕ Γ(U2,OX2) = P/IC1 ⊕ P/IC2

holds, we get M(C) = P/(IC1 + IC2). ¤

2. Examples for deficiency modules of curves

In the following we provide some examples of computations of de-
ficiency modules via CoCoA. For this purpose we provide the useful
function GenLinForm(N). This function approximates a general linear
form, i.e. it produces a linear form with randomized integer coefficients
in the interval [−N,N ]. This is sometimes computationally more con-
venient than Randomized(DensePoly(1)):
Define GenLinForm(N);
Return Sum([Rand(-N,N)*L | L In Indets()]);
EndDefine;

Example 2.1. Firstly, we consider the curve C1 given as the union of
two skew lines in P3.

We realize the situation in CoCoA via the commands
Use P::=Q[x[0..3]];
IL_1:=Ideal([GenLinForm(10),GenLinForm(10)]);
IL_2:=Ideal([GenLinForm(10),GenLinForm(10)]);

Now we apply Proposition 1.7 and set
I:=IL_1+IL_2;

and compute the deficiency module of C1 via
MC_1:=P/I;

By using the command
Hilbert(MC_1);

we obtain the Hilbert function of M(C1) and get the CoCoA answer:
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H(0) = 1
H(t) = 0 for t >= 1
-------------------------------

i.e. M(C1)0 = K and M(C1)t = 0 for t > 0. In particular C1 is not
arithmetically Cohen-Macaulay.

Example 2.2. Let C2 := V+(x0x2 − x2
1, x1x3 − x2

2, x0x3 − x1x2) ⊂ P3

be the twisted cubic curve. So we use the commands
Use P::=Q[x[0..3]];
IC_2:=Ideal(x[0]x[2]-x[1]^2,x[1]x[3]-x[2]^2,

x[0]x[3]-x[1]x[2]);

and compute the resolution of P/IC2 by
Res(P/IC_2);

CoCoA yields:
0 --> P^2(-3) --> P^3(-2) --> P
-------------------------------

We see that pd(P/IC2) = 2 = codim IC2 where codim I = min{ht(p) :
I ⊆ p minimal}. Hence R = P/IC2 is Cohen-Macaulay and therefore
by Corollary 1.4 we get M(C2) = 0.

Example 2.3. Here we consider the smooth rational quartic curve
C3 ⊂ P3 defined as the vanishing of the 2× 2 minors of the matrix

(
x0 x2

1 x1x3 x2

x1 x0x2 x2
2 x3

)
.

We realize the vanishing ideal of the curve C3 by the commands
Use P::=Q[x[0..3]];
M:=Mat([[x[0],x[1]^2,x[1]x[3],x[2]],

[x[1],x[0]x[2],x[2]^2,x[3]]]);
IC_3:=Ideal(Minors(2,M));

Now we look at the K-dual of the deficiency module M(C3) by
MC_3:=DeficiencyDual(IC_3);

If we compute the Hilbert function of M(C3) via
Hilbert(MC_3);

we get
H(0) = 1
H(t) = 0 for t >= 1
-------------------------------
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Hence M(C3) is one-dimensional.

Example 2.4. In this example we want to study the deficiency module
of a curve C4 ⊂ P3 given as the disjoint union of a line and a plane
curve of degree d for some d ∈ N.

So we realize the situation (for d = 3) with CoCoA in the following
way:

Use P::=Q[x[0..3]];
IL:=Ideal([GenLinForm(10),GenLinForm(10)]);
Use S::=Q[x[0..2]];
D:=3;
F:=Randomized(DensePoly(D));
Use P;
IPC:=Ideal(BringIn(F),x[3]);

Now we apply again Proposition 1.7 and compute the deficiency module
M(C4) via

I:=IL+IPC;
MC_4:=P/I;

Now we compute the Hilbert function of M(C4) by

Hilbert(MC_4);

and get

H(0) = 1
H(1) = 1
H(2) = 1
H(t) = 0 for t >= 3
-------------------------------

i.e. in the case d = 3 we have dimK(M(C4)) = 3. If we do this for
various values d we get dimK(M(C4)) = d as it should be.

Example 2.5. We want to compute the deficiency module for a curve
C5 ⊂ P3 given as the union of a line and a plane curve of degree d,
d ∈ N, which meet in (at least) one point.

To do this we fix the (intersection) point y := V+(x1, x2, x3). So we
compute the vanishing ideal of C5 (for d = 3) in the following way:

Use P::=Q[x[0..3]];
G_1:=Sum([Rand(-10,10)*x[T]|T In 1..3]);
G_2:=Sum([Rand(-10,10)*x[T]|T In 1..3]);
IL:=Ideal(G_1,G_2);



THE DEFICIENCY MODULE OF A CURVE AND ITS SUBMODULES 9

So IL is the ideal corresponding to a line in P3 passing through y. Now
we construct an appropriate plane curve meeting the line L in the point
y.

Use S::=Q[x[0..2]];
D:=3;
F:=Randomized(DensePoly(D)-x[0]^D);
Use P;
IPC:=Ideal(BringIn(F),x[3]);

Hence we get the vanishing ideal of C5 by

IC_5:=Intersection(IL,IPC);

and obtain the K-dual of the deficiency module as usual by

DeficiencyDual(IC_5);

CoCoA yields:

Module([0])
-------------------------------

As in the previous example we get the same result for various values of
d. So it is arithmetically Cohen-Macaulay.

Example 2.6. We consider the coordinate cross in P3 defined by the
intersection Icross of the ideals (x1, x2), (x1, x3) and (x2, x3) in P =
K[x0, x1, x2, x3]. We realize I in CoCoA via

Use P::=Q[x[0..3]];
L:=[Ideal(x[1],x[2]),Ideal(x[1],x[3]),Ideal(x[2],x[3])];
ICross:=IntersectionList(L);

Now we compute a regular sequence of type (3, 3) in Icross which defines
a complete intersection curve containing the coordinate cross. To do
this we use the function GenRegSeq(I,L) defined in [3]:

ICi:=Ideal(GenRegSeq(ICross,[3,3]));

Now we look at the vanishing ideal IX of the residual curve X by

IX:=ICi:ICross;

If we compute the Hilbert polynomial of X via

Hilbert(P/IX);

we get HPX(t) = HPP/IX
(t) = 6t − 2 for t ≥ 1, i.e. X is a curve of

degree 6 and genus 3. Furthermore, by using

DeficiencyDual(IX);
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we notice that M(X) = 0, i.e. by Corollary 1.4 the curve X is arith-
metically Cohen-Macaulay. We check with CoCoA that X is a smooth
curve by computing the singular locus:
Define IsSmooth(I)
J:=Jacobian(Gens(I));
L:=List(Minors(1,J));
SingLoc:=Radical(Ideal(L)+I);

Return SingLoc=Ideal(Indets());
EndDefine;

IsSmooth(IX);

Next, we construct another smooth curve in P3 of degree 6 and genus
3 which is not arithmetically Cohen-Macaulay. For this we go back to
Example 2.1 and consider the curve C1 given as the union of two skew
lines in P3. We obtain the vanishing ideal of C1 by
IC_1:=Intersection(IL_1,IL_2);

We have already shown that C1 is not arithmetically Cohen-Macaulay
and it is known that this is invariant under linkage. In the first step
we link the curve C1 via a complete intersection curve of type (3, 4) to
a curve X1. To do this we use the commands:
ICi_1:=Ideal(GenRegSeq(IC_1,[3,4]));
IX_1:=ICi_1:IC_1;

Now we link the curve X1 further via a complete intersection curve of
type (4, 4) to a curve X2:
ICi_2:=Ideal(GenRegSeq(IX_1,[4,4]));
IX_2:=ICi_2:IX_1;

Now we check the Hilbert polynomial with
Hilbert(P/IX_2);

and get HPX2(t) = HPP/IX2
(t) = 6t− 2 for t ≥ 1. And indeed, we use

DeficiencyDual(IX_2);

to check that M(X2) 6= 0, i.e. X2 is not arithmetically Cohen-Macaulay.
Finally, the smoothness of X2 is established via
IsSmooth(IX_2);

3. A degree bound for curves in P3

In this section we want to study a degree bound for curves in P3

given in [5] and compute some examples. In the sequel C denotes a
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curve in P3. Firstly, we define a submodule of the deficiency module
M(C) of C.

Definition 3.1. Let `, `′ ∈ P1 be two general linear forms and let
A := (`, `′) denote the ideal they generate. Then we define the P -
submodule KA ⊆ M(C) as the submodule annihilated by A, i.e.

KA = 0 :M(C) A.

We want to compute with CoCoA a presentation of the module KA.
To do this, we need a presentation for the annihilator K` := 0 :M(C) (`)
first, where ` ∈ P1 is a general linear form. So we write a function
K_L(I), which computes a presentation of K` for a curve defined by
the ideal I.
Define K_L(I)
MCdual:=DeficiencyDual(I);
MC:=KDual(MCdual);
GensMC:=Gens(MC);
N:=Len(GensMC[1]);
F:=GenLinForm(10);
L:=Concat([F*E_(I,N) | I In 1..N],GensMC);
S:=Syz(L);
GensCol:=[Vector(First(List(T),N)) | T In Gens(S)];

Return Module(GensCol);
EndDefine;

With the help of the function K_L(I) above we can easily write a
function K_A(I), which computes a presentation of the submodule
KA ⊆ M(C) for a curve defined by the ideal I:
Define K_A(I)
KL_1:=K_L(I);
KL_2:=K_L(I);

Return(Intersection(KL_1,KL_2));
EndDefine;

Definition 3.2. Let M be a finitely generated graded P -module with
graded minimal free resolution

0 −→
bs⊕

j=1

P (−ds,j) −→ · · · −→
b0⊕

j=1

P (−d0,j) −→ M −→ 0.

We define
mi(M) := min{di,1, . . . , di,bi}.
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The following theorem (cf. [5, Corollary 2.3]), which provides a
lower bound for the degree of a curve in P3, builds the fundament for
our further studies.

Theorem 3.3. Let C ⊂ P3 be a curve. If m2(P/IC) ≤ m1(KA) + 2
then

deg(C) ≥ 1
2
·m1(P/IC) ·m2(P/IC)− dimK(KA).

Example 3.4. We come back to Example 2.1 and consider the curve
C1 given by the union of two skew lines in P3.

Since we have already shown that M(C1) = K 6= 0, we know that
C1 is not arithmetically Cohen-Macaulay (cf. Corollary 1.4). Next we
compute the vanishing ideal of C1 by
IC_1:=Intersection(IL_1,IL_2);

where IL_1 and IL_2 were defined in Example 2.1. Now we compute
the Hilbert polynomial of the curve C1 utilising the command
Hilbert(P/IC_1);

and get
H(0) = 1
H(t) = 2t + 2 for t >= 1
-------------------------------

i.e the Hilbert polynomial of C1 equals HPC1(t) = 2t + 2. Hence
deg C1 = 2. Now we obtain the numbers m1(P/IC1) and m2(P/IC1)
by computing the resolution of P/IC1 :
Res(P/IC_1);

The answer of CoCoA is
0 --> P(-4) --> P^4(-3) --> P^4(-2) --> P
-------------------------------

Thus we get m1(P/IC1) = 2 and m2(P/IC1) = 3. This example illus-
trates that the stronger degree bound

deg(C) ≥ 1
2
·m1(P/IC) ·m2(P/IC)

does not hold in general for curves which are not arithmetically Cohen-
Macaulay, since for the curve C1 the right hand side equals 3.

Example 3.5. We consider a curve C ⊂ P3 given as the disjoint union
of two complete intersections of type (16, 16) (cf. also [5, Example 2.7]).

To simplify matters we consider the complete intersections I1 :=
(x16

0 , x16
1 ) and I2 := (x16

2 , x16
3 ). We realise the vanishing ideal of C via
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Use P::=Q[x[0..3]];
I_1:=Ideal(x[0]^16,x[1]^16);
I_2:=Ideal(x[2]^16,x[3]^16);
IC:=Intersection(I_1,I_2);

We use Proposition 1.7 to compute the deficiency module M(C):
I:=I_1+I_2;
MC:=P/I;

Since I1 + I2 is an m-primary ideal, the Hilbert function of M(C) =
P/(I1+I2) has only finitely many non-zero values. Therefore, we obtain
the dimension of M(C) by
Sum:=0;
T:=0;
While Hilbert(MC,T)<>0 Do
Sum:=Hilbert(MC,T)+Sum;
T:=T+1;

EndWhile;

Now the command Sum; yields dimK(M(C)) = 65536. We compute
the Hilbert polynomial of our curve C as usual by
Hilbert(P/IC);

and verify that the degree of C is 512 = 2 · 162 as expected. Next we
compute the minimal graded free resolutions of P/IC with
Res(P/IC);

and get
0 --> P(-64) --> P^4(-48) --> P^4(-32) --> P
-------------------------------

Hence m1(P/IC) = 32 and m2(P/IC) = 48. Now we compute a rep-
resentation for the annihilator K` for a general linear form `. Since
we have given the deficiency module M(C) = P/I as a quotient of
the polynomial ring with I = I1 + I2 in this special example, we can
compute it without using the Ext-package in the following way: We
have K` = {(g + I) ∈ P/I : ` · (g + I) = 0 + I}. Therefore we have
to compute the preimage of K` in the polynomial ring P which equals
the ideal quotient J1 := I :P (`). To do this we use the commands
L_1:=Ideal(GenLinForm(10));
J_1:=I:L_1;

To get the dimension of K` as a K-vector space we compute at first via
Len(QuotientBasis(J_1));
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the lenght of a K-basis of P/J1 which equals 62800. Hence we have
dimK(K`) = 65536 − 62800 = 2736. In the same way we compute a
representation of the submodule KA ⊆ M(C):
L_2:=Ideal(GenLinForm(10),GenLinForm(10));
J_2:=I:L_2;

The command
Len(QuotientBasis(J_2));

yields dimK(P/J2) = 65365 and therefore we have

dimK(KA) = 65536− 65365 = 171.

Next we want to compute the value m1(KA), i.e. the minimal degree
of a generator of KA. To do this we compute the graded minimal free
resolution of P/I and P/J2 respectively by
Res(P/I);
Res(P/J_2);

and get
0 --> P(-64) --> P^4(-48) --> P^6(-32) --> P^4(-16) --> P
-------------------------------
0 --> P^2(-63) --> P(-42)(+)P^2(-43)(+)P^8(-47)(+)P(-62)
--> P^6(-32)(+)P^2(-41)(+)P^4(-42)(+)P^4(-46) -->
P^4(-16)(+)P(-40)(+)P^2(-41) --> P
-------------------------------

Since KA
∼= J2/I we see that m1(KA) = 40. Altogether we have

m2(P/IC) = 48 > 42 = 40 + 2 = m1(KA) + 2

and

deg C = 512 < 597 =
1
2
· 32 · 48− 171

=
1
2
·m1(P/IC) ·m2(P/IC)− dimK(KA).

Hence this example illustrates that the assumption

m2(P/IC) ≤ m1(KA) + 2

in Theorem 3.3 is necessary and can not be dropped.

Example 3.6. We take a (non-reduced) curve C ⊂ P3 defined by the
ideal IC := (x0, x1)12 + (f), where f ∈ (x0, x1) is a generic form of
degree 15 (cf. also [5, Example 2.8]). This can be realized in CoCoA
via the following instructions:
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Use P::=Q[x[0..3]];
J:=Ideal(x[0],x[1])^12;
F:=x[0]*GenForm(14,50)+x[1]*GenForm(14,50);
IC:=J+Ideal(F);

Here the procedure GenForm(D,N) returns a general form of degree D
with randomized coefficients in the interval [−N, N ]:
Define GenForm(D,N)
V:=Gens(Ideal(Indets())^D);

Return Sum([Rand(-N,N)*V[I] | I In 1..Len(V)]);
EndDefine;

If we compute the Hilbert polynomial of C with
Hilbert(P/IC);

we get
HPC(t) = HPP/IC

(t) = 12t + 870

for t ≥ 24, i.e. deg(C) = 12. Furthermore, the computation of the
minimal graded free resolution of P/IC via
Res(P/IC);

yields
0 --> P^11(-27) --> P^12(-13)(+)P^12(-26)
--> P^13(-12)(+)P(-15) --> P
-------------------------------

Hence m1(P/IC) = 12 and m2(P/IC) = 13. We obtain the deficiency
module M(C) and its submodule KA via
MC:=KDual(DeficiencyDual(IC));
KA:=K_A(MC);

The dimension of the deficiency module can be calculated, for example,
as the length of a normal basis defined in Section 1. The command
Len(NormalBasisM(MC));

then gives dimK M(C) = 56056. Likewise,
Len(NormalBasisM(KA));

gives the codimension of KA in M(C), which yields dimK KA = 66.
The problem of determining m1(KA), i.e. the degree of a minimal gen-
erator of KA, is more delicate, since degree shifts are not supported in
the current version of CoCoA. We work around this as follows: Look-
ing at the resolution of IC , we find that Ext3(P/IC , P ) ∼= P 11(27)/N .
Calculating the Hilbert function via
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Hilbert(DeficiencyDual(IC));

we get nontrivial terms in degrees 0 to 166, i.e. Ext3(P/IC , P ) is con-
centrated in degrees −27 to 139. The K-dual then is concentrated in
degrees −139 to 27, and taking the degree shift into account as given
in Theorem 1.5, we see that the last non-trivial component of the de-
ficiency module is in degree 23. Calculating the Hilbert function of
KA with the help of HilbertSeriesShifts we find that the Hilbert
function of KA is of the shape

HFKA
: 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.

Taking the various shifts and twists into account, this has to be inter-
preted as

HFKA
(t) = t− 12

for 13 ≤ t ≤ 23 and HFKA
(t) = 0 otherwise. In particular, we get

m1(KA) = 13.
Hence the assumption

m2(P/IC) = 13 ≤ 15 = 13 + 2 = m1(KA) + 2

of Theorem 3.3 holds and the degree bound given there is sharp since
we have

deg(C) = 12 =
1
2
· 12 · 13− 66 =

1
2
·m1(P/IC) ·m2(P/IC)−dimK(KA).
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