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1. Introduction

This is a summary of the third tutorial handed out at the CoCoA
summer school 2005. Our aim here is to investigate the weak Lef-
schetz property in the study of Artinian algebras. Moreover we pro-
vide the necessary CoCoA (version 4.6) code which can be used for
further experiments. We thank Holger Brenner, Martin Kreuzer and
Juan Migliore for helpful discussions.

Let K be an infinite field and P := K[x0, . . . , xn] the standard graded
polynomial ring over K. Furthermore, let I ⊆ P be a homogeneous
ideal and denote by A := P/I the corresponding quotient P -algebra.
We recall that A is Artinian if every descending chain of ideals in A is
eventually stationary.

To start with, we give some well-known reformulations of the defini-
tion of an Artinian algebra (compare also [5, Proposition 3.7.1] and [6,
Proposition 5.6.30]).

Proposition 1.1. Let I ⊆ P = K[x0, . . . , xn] be a homogeneous ideal
and A := P/I. The following conditions are equivalent:

(1) A is Artinian.
(2) dimK A < ∞.
(3) dimA = 0 (Krull dimension ), i.e. every prime ideal in A is

maximal.
(4) For any term ordering σ of P and for all i ∈ {0, . . . , n} there

is an ni ∈ N such that xni
i ∈ LTσ(I).

Proof. (1) ⇒ (3). Let p ⊆ A be a prime ideal. We show that the
integral domain B := A/p is a field. So let x ∈ B, x 6= 0. By the
descending chain condition there exists some k ∈ N such that Bxk =
Bxk+1. But that means xk = yxk+1 for some y ∈ B and hence 1 = yx.
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(3) ⇒ (2). Assume that every prime ideal in A is maximal. Since
A is Noetherian, it has only finitely many minimal prime ideals (cf.
[6, Proposition 5.6.15(b)]), i.e. the topological space X := SpecA =
{m1, . . . , mr} = {P1, . . . , Pr} is a discrete point set. In particular, we
have Γ({Pi},OX) = Ami for i = 1, . . . , r and therefore A = Γ(X,OX) ∼=
Am1 × · · ·×Amr . Hence we can assume that A is even a local ring with
maximal ideal m. The quotient algebra A/m is a finite dimensional
vector space by the field theoretic version of Hilbert’s Nullstellensatz
(cf. [5, Theorem 2.6.6(b)]). Therefore mj/mj+1 ∼= mj⊗A (A/m) is finite
dimensional too for j ≥ 1. Since mk = (0) for a k ∈ N, it follows from
the exact sequence

0 −→ mj+1 −→ mj −→ mj/mj+1 −→ 0

by descending induction that all mj are finite dimensional vector spaces.
(2) ⇒ (1). By choosing an appropriate K−basis for each ideal in a

chain q0 ⊃ q1 ⊃ . . . it follows that there are at most dimK A proper
inclusions.

(2) ⇒ (4). Since A = P/I is finite dimensional, there exists for each
i ∈ {0, . . . , n} some ni ∈ N such that xni

i +
∑ni−1

j=0 ajx
j
i = 0 holds in

A for certain aj ∈ K. In P , this translates to xni
i +

∑ni−1
j=0 ajx

j
i ∈ I

and therefore xni
i ∈ I because I is homogeneous. In particular, xni

i ∈
LTσ(I).

(4) ⇒ (2). By Macaulay’s Basis Theorem (cf. [5, Theorem 1.5.7]),
Tn\LTσ(I) constitutes a K−basis for A, where Tn denotes the monoid
of terms of P (i.e. all monomials). As a subset of the finite set
{xb0

0 · · ·xbn
n |bi ≤ ni}, it is finite. ¤

Note that the proposition remains valid if the ideal I is not ho-
mogeneous. Indeed this assumption was used only in the implication
”(2) ⇒ (4)”; in the general case one passes to the leading term ideal.
Condition (3) of Proposition 1.1 allows a quick check with CoCoA
whether A = P/I is Artinian:

Define IsArtinian(I)
Return Dim(CurrentRing()/I)=0;
EndDefine;

Since by Proposition 1.1 the graded P -algebra A is a finite dimen-
sional vector space, it is of the form

A = K ⊕A1 ⊕ · · · ⊕As
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for some s ≥ 0. The socle of A, denoted socA, is the annihilator of
m := (x1, . . . , xn), i.e.

soc A := ((0) :A m) = {x ∈ A : m · x = 0}.
The number s = max{i |Ai 6= 0} is called the socle degree of A. Ob-
viously, As ⊆ soc A. We recall that the h-vector of A is the vector
(1, dimK A1, . . . ,dimK As). The following one-liner computes the socle
degree of A:
Define SocDeg(I)
Return Len(HVector(CurrentRing()/I))-1;
EndDefine;

Definition 1.2. Let I ⊆ P be a homogeneous ideal such that A = P/I
is Artinian.

(1) A is called Gorenstein if its socle is a 1-dimensional K-vector
space.

(2) The algebra A is called level if its socle is precisely As, where
s is the socle degree of A.

This definition coincides with other definitions of Gorenstein found
in the literature. Clearly Gorenstein algebras are level algebras. With
the help of the function SocDeg(I) defined above we are able to de-
fine two CoCoA functions IsArtinianGorenstein(I) and IsLevel(I)
which check whether A has the properties in question and return the
corresponding Boolean value.
Define IsArtinianGorenstein(I)
If IsArtinian(I)=False Then

Return False;
EndIf;

Return Last(HVector(CurrentRing()/I))=1;
EndDefine;

Define IsLevel(I)
If IsArtinian(I)=False Then

Return False;
EndIf;
Socle:=I:Ideal(Indets());
DimSocle:=Len(QuotientBasis(I))
-Len(QuotientBasis(Socle));

Return DimSocle=Last(HVector(CurrentRing()/I));
EndDefine;
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Definition 1.3. Let I ⊆ P be a homogeneous ideal such that A = P/I
is Artinian.

(1) A has the weak Lefschetz property (WLP) if, for a general linear
form ` ∈ P1, the multiplication maps µ` : Ai → Ai+1 have
maximal rank for all i ∈ {1, . . . , s − 1}, i.e. the maps µ` are
either injective or surjective.

(2) A has the strong Lefschetz property (SLP) if, for every d ≥ 1
and every general form f ∈ Pd, the multiplication maps µf :
Ai → Ai+d have maximal rank for all i ∈ {1, . . . , s− 1}.

Remark 1.4. We have to explain the term general in Definition 1.3.
The space of linear forms P1 is a (n+1)-dimensional vector space over K
and can be identified with the K-valued points of an affine space An+1

endowed with the Zariski topology. To say that a property depending
on a linear form holds generally or generically means that there exists a
non-empty Zariski-open subset U ⊆ An+1 such that for ` ∈ U the prop-
erty holds. The best approximation for a general linear form which Co-
CoA provides is given by the command Randomized(DensePoly(1));.

Remark 1.5. We want to point out that our definition of SLP is
often called the maximal rank property (cf. [9, Definition 1.1]). The
usual notion is: the Artinian algebra A has SLP if for every general
linear form ` and every d ≥ 1 the maps µ`d have maximal rank for all
i ∈ {1, . . . , s−1}. One observes that this property implies the maximal
rank property by semicontinuity.

The following proposition shows that the h-vector of an Artinian
P -algebra having the weak Lefschetz property has a certain shape.

Proposition 1.6. Let A = P/I be an Artinian algebra with socle degree
s which has WLP. Then the Hilbert function HFA satisfies

1 = HFA(0) < HFA(1) < · · · < HFA(t) ≥ HFA(t + 1) ≥ · · · ≥ HFA(s)

for some t ≥ 1.

Proof. Let ` be a generic linear form. Assume that At
·`→ At+1 is

surjective for a t < s. It is enough to show that At+1
·`→ At+2 is

surjective as well. Since A is a standard graded algebra, we can write
every x ∈ At+2 as x =

∑r
i=1 aibi with ai ∈ A1 and bi ∈ At+1. By

assumption each bi can be written as bi = `ci with ci ∈ At. Hence
x = `

∑r
i=1 aici and aici ∈ At+1 for i = 1, . . . , r. ¤
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To decide with the help of CoCoA whether A has one of these prop-
erties, we first write a function HasMaxRank(I,D). This function checks
whether the map µf has maximal rank for a general (or rather random-
ized) form f ∈ Pd.
Define HasMaxRank(I,D)
L:=Randomized(DensePoly(D));
J:=Ideal([L])+I;
HJ:=Hilbert(CurrentRing()/J);
HI:=Hilbert(CurrentRing()/I);
K:=0;
While (EvalHilbertFn(HI,K)>0) Do

Dif:=Max(EvalHilbertFn(HI,K+D)
-EvalHilbertFn(HI,K),0);
If EvalHilbertFn(HJ,K+D)<>Dif Then
Return False;

EndIf;
K:=K+1;

EndWhile;
Return True;
EndDefine;

This function uses the exactness of the sequence

(P/I)k
·F−→ (P/I)k+d −→ (P/(I + (F )))k+d −→ 0.

Now we can check whether A has WLP or SLP:
Define HasWLP(I)
Return HasMaxRank(I,1);
EndDefine;

Define HasSLP(I)
Result:=True;
For D:=1 To SocDeg(I) Do

Result:=Result AND HasMaxRank(I,D);
EndFor;

Return Result;
EndDefine;

Finally, we will define the function GenLinForm(N) which approxi-
mates a general linear form ` ∈ P1 with integer coefficients between
−N and N :
Define GenLinForm(N);
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Return Sum([Rand(-N,N)*L | L In Indets()]);
EndDefine;

2. Weak Lefschetz Property and the Postulation Hilbert
Scheme

In this section we follow essentially [8, Paragraph after Remark 3.3
and Example 3.4]. Let Z denote a zero-dimensional subscheme of Pn

with coordinate ring RZ := P/IZ . Then the Hilbert function of Z is
defined as the Hilbert function of RZ . If λ ∈ P1 is a general linear
form, the Artinian graded algebra AZ := P/(IZ + (λ)) is called the
Artinian reduction of RZ . In particular, the Betti diagrams of RZ and
AZ coincide and we have

HFAZ
(i) = HFRZ

(i)−HFRZ
(i− 1) = ∆ HFRZ

(i),

i.e. the Hilbert function (or h-vector) of AZ is given by the first differ-
ence of the Hilbert function of RZ (cf. [7, Proposition 4.3]). We say
that Z has the weak Lefschetz property if its Artinian reduction AZ has
this property.

Now, we fix a Hilbert function H of a zero-dimensional scheme and
the corresponding h-vector h = (a0, . . . , as) respectively. Next we con-
sider the “postulation” Hilbert scheme HilbH(Pn) parameterizing all
zero-dimensional subschemes of Pn having the given Hilbert function H
(cf. [4, Definition 5.20]). Since one can compute the degree d of such a
scheme by d =

∑s
i=0 ai, HilbH(Pn) is sitting inside the “punctual”

Hilbert scheme Hilbd(Pn) which parameterizes all zero-dimensional
subschemes of Pn of degree d. For our further investigations in this
section it is not necessary to pass over to the closure of HilbH(Pn)
inside Hilbd(Pn) as it was done in [8].

In the sequel we will study the behavior of the weak Lefschetz prop-
erty on some irreducible components of HilbH(Pn).

Proposition 2.1. The weak Lefschetz property is an open property
on HilbH(Pn), i.e. in any irreducible component of HilbH(Pn) there
exists a Zariski-open subset (possibly empty) which corresponds to zero-
dimensional schemes having WLP.

Proof. For every point x ∈ HilbH(Pn) we consider the maps

(Ax,λ)i := (P/(Ix + (λ)))i
·`−→ (Ax,λ)i+1 := (P/(Ix + (λ)))i+1

for λ, ` ∈ P1 and for a fixed value i ∈ Z, where Ix denotes the ho-
mogeneous ideal parameterized by x. The parameter x, λ, ` vary in
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HilbH(Pn)× P1 × P1. The vector space (Ax,λ)i corresponds to a point
in the Grassmanian Gi := Grass(dimK Pi − ai, Pi). More precisely,
by the universal property of Grassmanians, there exists a morphism
ψi : HilbH(Pn) × P1 → Gi such that Vψi(x,λ) = Ix + (λ). For y ∈ Gi

there exists a basis v1, . . . , vdimK Pi of Pi and an open neighborhood
y ∈ U ⊆ Gi such that the images of v1, . . . , vai form a basis of P1/Vz

for all z ∈ U (compare [12, Beispiel 1.B.8]). This induces for every
z ∈ U a K-vector space isomorphism θi,z : Kai → Pi/Vz by sending
ek 7→ vk. We consider now for (x, λ, `) ∈ HilbH(Pn) × P1 × P1 the
commutative diagram

Kai
·˜̀−−−−→ Kai+1

θi,ψi(x,λ)

y
yθi+1,ψi+1(x,λ)

(Ax,λ)i
·`−−−−→ (Ax,λ)i+1.

Here the linear map

˜̀= θ−1
i+1,ψi+1(x,λ) ◦ ` ◦ θi,ψi(x,λ)

depends algebraically on (x, λ, `) ∈ HilbH(Pn) × P1 × P1. As the
maximal rank property of ˜̀ (hence of `) can be checked by looking
at minors, there exists an Zariski open subset Wi ⊆ HilbH(Pn) ×
P1 × P1 such that ˜̀ = ˜̀(i, x, λ, `) has the maximal rank property if
and only if (x, λ, `) ∈ Wi. Hence there exists also an open subset
W ⊆ HilbH(Pn) × P1 × P1 such that ˜̀ = ˜̀(x, λ, `) has the maximal
rank property for all i if and only if (x, λ, `) ∈ W . Since the projection
p1 : HilbH(Pn)×P1 ×P1 → HilbH(Pn) is open, we get an open subset
p1(W ) in HilbH(Pn). For an element x ∈ HilbH(Pn) the Artinian re-
duction of P/Ix has WLP if and only if there exists λ ∈ P1 and ` ∈ P1,
such that (P/(Ix +(λ)))i

·`→ (P/(Ix +(λ)))i+1 has maximal rank for all
i. This is exactly the case if x ∈ p1(W ). ¤

In the following two examples we will work in the Hilbert scheme
HilbH(P3) where H is the Hilbert function which corresponds to the
h-vector (1, 3, 6, 9, 11, 11, 11).

Example 2.2. First we consider the ideal

I1 := (x3
1, x

2
1x

2
2, x

2
1x2x

2
3, x

5
3) + (x1, x2, x3)7 ⊆ R := K[x1, x2, x3].

We realize the situation in CoCoA via the commands
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Use R::=Q[x[1..3]];
M:=Ideal(Indets());
I_1:=Ideal(x[1]^3,x[1]^2x[2]^2,x[1]^2x[2]x[3]^2,x[3]^5)
+M^7;

Further, by using
IsArtinian(R/I_1);

we see that the corresponding quotient algebra A1 := R/I1 is Artinian.
The command
HVector(R/I_1);

yields that the h-vector of A1 equals h = (1, 3, 6, 9, 11, 11, 11). Next we
compute the Betti diagram of A1 via
Bettidiagram(R/I_1);

and get
0 1 2 3

-------------------------
0: 1 - - -
1: - - - -
2: - 1 - -
3: - 1 1 -
4: - 2 2 1
5: - - - -
6: - 10 22 11

-------------------------
Tot: 1 14 25 12
-------------------------------

From this Betti diagram we see that A1 has a socle element in de-
gree 4 (compare for instance [2, Exercise 3.3.26] and use socA1

∼=
HomP (K,A1)). Since a socle element will be annihilated by any linear
form `, the map

(A1)4
·`−→ (A1)5

has a non-zero kernel, i.e. is not injective. But both of these vector
spaces are of dimension 11, hence the map above is not surjective either.
Therefore, the Artinian algebra A1 has not WLP.

Since I1 is a monomial ideal, we lift I1 to the vanishing ideal IZ1 of a
(reduced) zero-dimensional subscheme Z1 in P3 (compare for example
[10] for an explicit description of the lifting procedure). Moreover, A1

equals the Artinian reduction of the homogeneous coordinate ring of
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Z1, i.e. Z1 corresponds to a point in the Hilbert scheme HilbH(P3),
where H = 1, 4, 10, 19, 30, 41, 52, 52, . . ..

Since the graded Betti numbers are upper semicontinuous (cf. for
instance [11, Lemma 1.2]) with respect to the flat family π : X →
HilbH(P3) (where X is the universal family and the fiber Xy = π−1(y),
y ∈ HilbH(P3), is the zero-dimensional scheme parameterized by y
having Hilbert function H), there exists an Zariski-open subset U of the
irreducible component containing Z1 where the graded Betti numbers
are minimal, i.e. the graded Betti numbers of the general element in
the irreducible component of Z1 can only go down. Via
Res(R/I_1);

we compute the minimal graded free resolution of A1

0 --> R(-7)(+)R^11(-9) --> R(-5)(+)R^2(-6)(+)R^22(-8) -->
R(-3)(+)R(-4)(+)R^2(-5)(+)R^10(-7) --> R

explicitly. The copy of R(−7) in the last free module of this resolution
indicates the socle element in degree 4. That this copy can not vanish
for the generic element in the Hilbert scheme component of Z1 follows
from the following lemma.

Lemma 2.3. Let x be a point in HilbH(P3) represented by the zero-
dimensional scheme Zx and let

F• : 0 −→ F3 −→ F2 −→ F1 −→ F0 = P −→ P/Ix −→ 0

with Fi =
⊕

j P (−j)βi,j be the minimal graded free resolution of the
coordinate ring P/Ix of Zx. Then the minimal graded free resolution of
the general element in the irreducible component of x is obtained from
F• by the cancellation of some ghost-terms (i.e. a ghost-term is a pair
of copies P (−d), d ∈ Z, in two consecutive free modules Fi and Fi−1,
i = 2, 3).

Proof. By the upper semicontinuity of the graded Betti numbers the
graded Betti numbers of the general element can only go down from
F•. We can assume that the resolution has no ghost-terms, since can-
cellation of these terms does not change the situation numerically. We
have to show that the minimal free resolution of P/Ix is also the min-
imal free resolution of the general element in the irreducible compo-
nent of x. Further, we consider instead of the free modules Fi the
locally free sheaves F̃i =

⊕
j OP3(−j)βi,j for i = 0, . . . , 3 which decom-

pose as a direct sum of line bundles on P3. In particular, we have
HFAZx

(d) =
∑3

i=0 h0(F̃i(d)) (h0 denotes the dimension of the vector
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space of global sections). Now we assume that terms in the minimal
resolution of the general element vanish and denote these for each i by
Fi =

⊕
kOP3(−k)ni ⊆ F̃i for i = 1, 2, 3. Since the Hilbert function does

not change, we have h0(F1(n)) + h0(F3(n)) = h0(F2(n)) for all n ∈ Z.
Let m denote the minimum of all twists which occur in F1, F2, F3.
Let this minimum be in F3. If we tensor F1,F2,F3 with OP3(m) we
get h0(F1(m)) ≥ 0, h0(F2(m)) = 0 and h0(F3(m)) 6= 0. But this gives
a contradiction. Also in the other cases we get a contradiction. ¤

By the Betti diagram of Z1 above and Lemma 2.3 we see that
for every x ∈ U the Artinian reduction of the corresponding zero-
dimensional scheme Zx has also a socle element in degree 4 and there-
fore Zx fails to have WLP. Therefore by Proposition 2.1 no element
in the irreducible component containing Z1 has WLP since two non-
empty open subsets of the irreducible component have a non-empty
intersection. In particular, the open set referred to in Proposition 2.1
is empty.

Example 2.4. For our second example, we construct a set Z2 of 52
points lying on a curve C of degree 11 in P3 which realizes the truncated
Hilbert function, i.e. satisfies HFZ2(t) = min{52, HFC(t)}. This is
achieved by constructing points which are “general enough” and is
done in two steps:

Step 1. Take D to be the union of a line L and 8 general points
P1, . . . , P8 in P3. We realize the corresponding vanishing ideal of D via
Use P::=Q[x[0..3]];
Points:=NewList(8);
For I:=1 To 8 Do
Points[I]:=[Rand(-10,10) | J In 1..4];

EndFor;
IPoints:=IdealOfProjectivePoints(Points);
IL:=Ideal(GenLinForm(10),GenLinForm(10));
ID:=Intersection(IPoints,IL);

Now we can link D via a complete intersection curve X of type (3, 4) to
a smooth curve C which is by the degree formula deg(X)− deg(D) =
deg(C) (cf. [7, §8]) of degree 11. To do this, the following function will
be very useful:
Define GenRegSeq(I,L)
M:=Ideal(Indets());
Seq:=[];
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N:=Ideal(0);
Foreach T In L Do

J:=Intersection(M^T,I);
D:=Deg(Head(MinGens(J)));
If D<>T Then
PrintLn"No regular sequence of this type possible";
Return;

EndIf;
L2:=[F In MinGens(J) | Deg(F)=D];
S:=Sum([Rand(-1000,1000)*F | F In L2]);
If N:Ideal(S)<>N Then
PrintLn"No regular sequence of this type possible";
Return;

EndIf;
Append(Seq,S);
N:=Ideal(Seq);

EndForeach;
Return Seq;
EndDefine;

The function GenRegSeq(I,L) takes an ideal I and a list of degrees
L and computes a regular sequence of homogeneous polynomials in I
whose degrees are given by L. If this is not possible it conveys this
information. Using this function we compute the vanishing ideal of C
with
IX:=Ideal(GenRegSeq(ID,[3,4]));
IC:=IX:ID;

If we compute the minimal graded free resolution of the homogeneous
coordinate ring P/IC of the curve C by
Res(P/IC);

we get
0 --> P^2(-6) --> P(-3)(+)P(-4)(+)P(-5) --> P
-------------------------------

i.e. C is arithmetically Cohen-Macaulay, since we have pd(P/IC) =
2 = codim(IC) where codim I = min{ht(p) : I ⊆ p minimal}.

We check with CoCoA that C is a smooth curve by computing the
singular locus:
Define IsSmooth(I)
J:=Jacobian(Gens(I));
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L:=List(Minors(1,J));
SingLoc:=Radical(Ideal(L)+I);

Return SingLoc=Ideal(Indets());
EndDefine;

IsSmooth(IC);

Step 2. Now that we have the ideal of 8 generic points on C, we
add suitable hyperplane sections of C. This is done by taking four
hyperplane sections which contain two of the eight points (giving 4·9 =
36 new points on C) and one hyperplane section containing three of
the eight points (giving a total of 8+36+8=52 points on C). Here is
our CoCoA code:
IPoints12:=IdealOfProjectivePoints([Points[1],Points[2]]);
GensIPoints12:=Gens(IPoints12);
L:=NewList(4);
For J:=1 To 4 Do
L[J]:=Rand(-100,100)*GensIPoints12[1]
+Rand(-100,100)*GensIPoints12[2];

EndFor;

Q:=NewList(4);
For J:=1 To 4 Do
Q[J]:=Colon(IC+Ideal(L[J]),IPoints);

EndFor;

IPoints123:=IdealOfProjectivePoints([Points[1],Points[2],
Points[3]]);
HIPoints123:=Comp(Gens(IPoints123),1);
QQ:=Colon(IC+Ideal(HIPoints123),IPoints123);

Hence we get the homogeneous vanishing ideal of our (reduced) zero-
dimensional scheme via
IZ_2:=IntersectionList([IPoints,Q[1],Q[2],Q[3],Q[4],QQ]);

We check by
Hilbert(P/IZ_2);

that the Hilbert function of the coordinate ring of Z2 equals:
H(0) = 1
H(1) = 4
H(2) = 10
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H(3) = 19
H(4) = 30
H(5) = 41
H(t) = 52 for t >= 6
-------------------------------

If we compute the Artinian reduction A2 of Z2 via
IA_2:=IZ_2+Ideal(GenLinForm(10));

we can check by using our function HasWLP(I) that A2 and therefore the
scheme Z2 has the weak Lefschetz property. It follows from Proposition
2.1 that the general element in the irreducible component containing
Z2 has WLP. Indeed, if we compute the Betti diagram

0 1 2 3
-------------------------
0: 1 - - -
1: - - - -
2: - 1 - -
3: - 1 - -
4: - 1 2 -
5: - - - -
6: - 11 22 11

-------------------------
Tot: 1 14 24 11
-------------------------------

of P/IZ2 with
BettiDiagram(P/IZ_2);

we see that it can not be a specialization of the Betti Diagram corre-
sponding to Z1 given in Example 2.2 and vice versa, i.e. the schemes
Z1 and Z2 belong to different irreducible components of HilbH(P3).

3. Hilbert Functions of Complete Intersections and WLP

The starting point of our investigations in this section is the following
theorem.

Theorem 3.1. Every Artinian complete intersection in K[x0, x1, x2]
has the weak Lefschetz property.

Proof. See [3, Theorem 2.3] or see [1, Corollary 2.4] for a more concep-
tual proof. ¤
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The Artinian reduction of a complete intersection in P3 has by The-
orem 3.1 the weak Lefschetz property. We will show in the sequel that
there still may exist a zero-dimensional scheme in P3 with a Hilbert
function of a complete intersection, but its Artinian reduction does not
have WLP.

Example 3.2. First, we consider the complete intersection of type
(2, 2, 4) given by I := (x2

0, x
2
1, x

4
2) ⊂ P := K[x0, x1, x2, x3] and de-

note the corresponding zero-dimensional scheme by Z1 = V+(I). Its
Artinian reduction

AZ1
∼= K[x0, x1, x2]/(x2

0, x
2
1, x

4
2)

has by Theorem 3.1 the weak Lefschetz property. We can also verify
this by using CoCoA and our function HasWLP(I). We compute the
h-vector of AZ1 := R/I via
Use R::=Q[x[0..2]];
I:=Ideal(x[0]^2,x[1]^2,x[2]^4);
HVector(R/I);

and get h = (1, 3, 4, 4, 3, 1).
Next, we construct a zero-dimensional scheme in P3 having the same

h-vector as the complete intersection above. We start with a generic
complete intersection in P2 of type (4, 4) containing the points P1 =
(1 : 0 : 0) and P2 = (0 : 1 : 0) (one gets this points with CoCoA by
GenericPoints(2)). Hence, we use the commands
Use R::=Q[x[0..2]];
IP_1P_2:=IdealOfProjectivePoints(GenericPoints(2));
ICi:=Ideal(GenRegSeq(IP_1P_2,[4,4]));

and compute the vanishing ideal IX of the pointset X which consists of
the residual 14 points via
IX:=ICi:IP_1P_2;

If we compute the Hilbert function of R/IX with
Hilbert(R/IX);

we get
H(0) = 1
H(1) = 3
H(2) = 6
H(3) = 10
H(4) = 13
H(t) = 14 for t >= 5
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-------------------------------

i.e. ∆ HFX = (1, 2, 3, 4, 3, 1). Next, we embed X in P3 via the canonical
inclusion P2 → P3 and consider the zero dimensional scheme Z2 :=
X∪{P, Q}, where P and Q are general points in P3. Our CoCoA code
for this is:

GensIX:=Gens(IX);
Use P::=Q[x[0..3]];
IXinP3:=Ideal(BringIn(GensIX))+ Ideal(x[3]);
IP:=Ideal(GenLinForm(20),GenLinForm(20),GenLinForm(20));
IQ:=Ideal(GenLinForm(20),GenLinForm(20),GenLinForm(20));
IZ_2:=Intersection(IXinP3,IP,IQ);

Note that in this code we can not just use the implemented function
GenericPoints(2) to obtain P and Q since this returns by default the
points (1 : 0 : 0 : 0) and (0 : 1 : 0 : 0) which are not generic anymore in
this context. If we compute further the Artinian reduction AZ2 of Z2

and its h-vector by

IA_Z_2:=IZ_2 + Ideal(GenLinForm(20));
HVector(P/IA_Z_2);

we notice that the Artinian algebras AZ1 and AZ2 have the same h-
vector. Now we obtain the Betti diagram of Z2 via

BettiDiagram(P/IZ_2);

and get

0 1 2 3
-------------------------
0: 1 - - -
1: - 2 1 -
2: - 1 2 1
3: - 2 2 -
4: - 1 2 1
5: - - 1 1

-------------------------
Tot: 1 6 8 3
-------------------------------

From this diagram we see that AZ2 has a socle element in degree 2, i.e.
the linear map

(AZ2)2
·`−→ (AZ2)3
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is not injective for any linear form `. Since dimK((AZ2)2) = 4 =
dimK((AZ2)3) this map fails to be surjective too, i.e. Z2 does not have
the weak Lefschetz property.

Here, we can not decide whether these two zero-dimensional schemes
belong to different irreducible components of HilbH(P3) where H is the
Hilbert function corresponding to the h-vector (1, 3, 4, 4, 3, 1). Because
if we look at the Betti Diagram

0 1 2 3
-------------------------
0: 1 - - -
1: - 2 - -
2: - - 1 -
3: - 1 - -
4: - - 2 -
5: - - - 1

-------------------------
Tot: 1 3 3 1
-------------------------------

of Z1, we can not exclude whether Z1 is a specialization of Z2.
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