CoCoA 4.7 Manual

March 29, 2007

Contents

I

I-1

Preamble

I-1.1 Version e e
1-1.2 Preface e e
I-1.3 System Distributiono
I-1.4 System Requirements e
I-1.5 Copyright and Trademarks
1-1.6 Acknowledgments

IT Introduction to CoCoA

II-1

I1-2

The CoCoA System

II-1.1
II-1.2
11-1.3
II-1.4
II-1.5

Tutorial
11-2.1
11-2.2
11-2.3
11-2.4
11-2.5
11-2.6
11-2.7
11-2.8
11-2.9
11-2.10
11-2.11
11-2.12
11-2.13
11-2.14
11-2.15
11-2.16
11-2.17
11-2.18
11-2.19
11-2.20
11-2.21
11-2.22
11-2.23
11-2.24
11-2.25

An Overview of the System
System Structure
Contributions e e
CoCoA and Macaulay
Pointers to the Literature

A Tutorial Introduction to CoCoA
Setting Up CoCoA for the Tutorial,
Entering Commands L
Examples of Entering Commands L
More on Entering Commands L L
After the Tutorial
Arithmetic L e
Variables e e e e
The Variable “It” e
Making Lists oL
Setting Upa Ringo e
A Groebner Basis Example
Eliminating Variables
Using More Than One Ring e
Substitutions L
First Functions oL e
More First Functions L Lo
Rings Inside User-Defined Functions,
Rational Normal Curve
Generic MANOTs e e e e e e e e
Leading Term (Initial) Ideals, Generic Polynomials
Ring Mapping Example e
Output toa File
Finite Point Sets: Buchberger-Moeller
Syzygies and Resolution Example 0L

17

19
19
19
19
20
20
20

4 Contents
1I-2.26 Factoring Polynomials 41
IIT The CoCoA Programming Language 43
ITI-1 Introduction to CoCoA Programming 45
111-1.1 An Overview of CoCoA Programming 45
ITI-2 Language Elements 47
III-2.1 Character Set and Special Symbols oL 47
II1-2.2 Identifiers o e e e e e e e 47
I11-2.3 Names of Indeterminates e 47
III-2.4 Reserved Names L L e 48
III-2.5 Comments o o e e e e e e e e e e 48
III-2.6 Data Types o e 48
I11-2.7 Commands and Functions for Data Types 49
ITI-3 Operators 51
III-3.1 CoCoA Operators v i v i e et e e e e e e e e e e e e e 51
IT1-3.2 Algebraic Operators i it e 51
II1-3.3 Relational Operators e 52
II1-3.4 Boolean Operators 53
II1-3.5 Selection Operators i i e e 53
III-3.6 Range Operator o ittt e 53
ITI-4 Evaluation and Assignment 55
III-4.1 Evaluation o e 55
II1-4.2 Assignment L 55
I1I-5 User-Defined Functions 57
I11-5.1 Introduction to User-Defined Functions 57
II1-5.2 Commands and Functions for User-Defined Functions 57
I1I-6 Flow Control: Conditional Statements and Loops 59
I11-6.1 Commands and Functions for Branching 59
II1-6.2 ~ Commands and Functions for Loops 59
II1-7 Input/Output 61
I1I-7.1 Introduction to IO o 61
I11-7.2 Standard IO o 61
IT1-7.3 File IO o e 61
III-7.4 String IO . .« . . o o 62
I11-7.5 Commands and Functions for IO 62
III-7.6 Tagged Printing e 63
II1-7.7 Tagging an Object e 63
I11-7.8 Printing a Tagged Object 64
III-7.9 Describing a Tagged Object o o 64
I11-7.10 Another Example Using Tags i ittt 65
I11-7.11 Commands and Functions for Tags 65
ITI-8 Memory Management 67
III-8.1 Introduction to Memory e 67
III-8.2 Working Memory s 67
I11-8.3 Global Memory e 68
III-8.4 Ring-Bound Memory e 69
I11-8.5 Commands and Functions for Memory 70

Contents

III-9 CoCoA Packages

I11-9.1 Introduction to Packages
I11-9.2 First Example of a Package o
I11-9.3 Package Essentials
111-9.4 Package Sourcing and Autoloading
I11-9.5 Global Aliases e
I11-9.6 Local Aliases o
I11-9.7 More Examples of Packages L
I11-9.8 Package Initialization
I11-9.9 Sharing Your Package e
I11-9.10 Commands and Functions for Packages
II1-9.11 Supported Packages
111-9.12 K-Algebra Homomorphisms
I11-9.13 Galois Package e
II1-9.14 Integer Programming L
111-9.15 Algebra of Invariants L
I11-9.16 Primary Ideals e
II1-9.17 Special Varieties e
III-9.18 Statistics o L e
I11-9.19 Geometrical Theorem-Proving L oo
III-9.20 Typevectors e
I11-9.21 Conductor o e
I11-9.22 Matrix Normal Form o o
I11-9.23 CantStop« . o o
111-9.24 Control

IV Doing Mathematics with CoCoA

IV-1 Booleans
IV-1.1 Introduction to Booleans e
IV-1.2 Commands and Functions for Booleans

IV-2 Numbers

IV-2.1 Introduction to Numbers
IV-2.2 Rationals e
IV-2.3 Numerators and Denominators for Rational Numbers
IV-2.4 Modular Integers L
IV-2.5 Commands and Functions for Numbers

IV-3 Strings

IV-3.1 Introduction to Strings L
IV-3.2 Concatenation e
IV-3.3 Substrings o .
IV-3.4 Quotes Within Strings e
IV-3.5 Commands and Functions for Strings

IV-4 Lists
1V-4.1 Introduction to LiStS e e e e
1V-4.2 Commands and Functions for Lists

IV-5 Records
IV-5.1 Introduction to Records e e e e
IV-5.2 Commands and Functions for Records

IV-6 Vectors
IV-6.1 Introduction to Vectors
IV-6.2 Commands and Functions for Vectors

Contents

6
IV-7 Matrices
IV-7.1 Introduction to Matrices e e e e e
IV-7.2 Commands and Functions for Matrices
IV-8 Rings
IV-8.1 Imntroduction to Rings L
IV-8.2 New Rings e
IV-8.3 Coefficient Rings o
IV-8.4 Indeterminates e e
IV-8.5 Weights Modifier
IV-8.6 Orderings
IV-8.7 Predefined Term-Orderings o e
IV-8.8 Temporary Term-Orderings o i
IV-8.9 Custom Term-Orderings e
IV-8.10 Module Orderings e
IV-8.11 Accessing Other Rings
IV-8.12 Ring Mappings: the Image Function
IV-8.13 Quotient Rings e
IV-8.14 Commands and Functions for Rings
IV-9 Polynomials
IV-9.1 Introduction to Polynomials
IV-9.2 Evaluation of Polynomials
IV-9.3 Commands and Functions for Polynomials
IV-10 Rational Functions
IV-10.1 Introduction to Rational Functions
IV-10.2 Numerators and Denominators for Rational Functions
IV-10.3 Commands and Functions for Rational Functions
IV-11 Ideals
IV-11.1 Introduction to Ideals e
IV-11.2 Commands and Functions for Ideals
IV-12 Modules
IV-12.1 Introduction to Moduleso
IV-12.2 Quotient Modules
IV-12.3 Shifts e
IV-12.4 Commands and Functions for Modules
IV-13 Groebner Bases and Related Computations
IV-13.1 Introduction to Groebner Bases in CoCoA
IV-13.2 Commands and Functions for Groebner-Type Computations
IV-13.3 The Interactive Groebner Framework
IV-13.4 Example: Interactive Groebner Basis Computation
IV-13.5 Example: Verbose Mode L
IV-13.6 Example: Interactive Resolution Computation
IV-13.7 Example: Truncations

IV-13.8 Hilbert-Driven Computations

IV-14 CoCoAServer
IV-14.1 Introduction to CoCoAServer
IV-14.2 Functions using CoCoAServer

101
101
102

103
103
103
104
104
105
106
106
107
107
108
108
109
110
110

113
113
114
114

117
117
117
118

119
119
119

123
123
123
124
124

127
127
127
129
129
130
130
131
132

135

Contents

V Working the System

V-1 CoCoA Panels
V-1.1 Introduction to Panels
V-1.2 Setting Options o e
V-1.3 Options in the GENERAL Panel
V-1.4 Echo . . . o e e e e e e
V-1.5 Timer e e e e e e
V-1.6 Trace . . . e e e e e e e
V-1.7 Indentation L e e e e e e
V-1.8 TraceSources e e e
V-1.9 SuppressWarnings Lo e e
V-1.10 ComputationStack
V-1.11 Options in the GROEBNER Panel
V-112 0 Sugar . ..o oo
V-1.13 FullRed e
V-1.14 SingleStepRed oL
V-1.15 Verbose e e
V-1.16 Commands and Functions for Panels

V-2 CoCoA’s Help System
V-2.1 Online Help e e e
V-2.2 Quick Tips for Using Online Help
V-2.3 Commands and Functions for Online Help
V-2.4 Other Help e e e

V-3 Fine Tuning At Start-up
V-3.1 User Initialization e

V-4 CoCoA Interfaces
V-4.1 CoCoA on a Macintosh
V-4.2 CoCoA under Unix
V-4.3 CoCoA under Windows/DOS L

VI Alphabetical List of Commands

VI-0 Special Characters
VI-0.1 Shortcuts e

VI-1 A
VI-LL Abs .
VI-1.2 Adjoint . . . oL
VI-1.3 AffHilbert e
VI-1.4 AffHilbertFn
VI-1.5 AffHilbertSeries e
VI-1.6 AffPoincare e
VI-LT ALas e
VI-1.8 AliasIn
VI-19 ALAses o o e e
VI-1.10 Append . . . oL
VI-L11 AScil . . . o o

137

139
139
139
140
140
141
141
142
142
142
142
143
143
143
144
144
144

145
145
145
146
146

149
149

151
151
151
152

153

155
155

VI-2 B
VI-2.1
VI-2.2
VI-2.3
VI-2.4
VI-2.5
VI-2.6
VI-2.7
VI-2.8
VI-2.9

VI-3 C
VI-3.1
VI-3.2
VI-3.3
VI-3.4
VI-3.5
VI-3.6
VI-3.7
VI-3.8
VI-3.9
VI-3.10
VI-3.11
VI-3.12
VI-3.13
VI-3.14
VI-3.15
VI-3.16
VI-3.17
VI-3.18
VI-3.19
VI-3.20
VI-3.21
VI-3.22
VI-3.23
VI-3.24
VI-3.25
VI-3.26

VI-4 D
VI-4.1
VI-4.2
VI-4.3
VI-4.4
VI-4.5
VI-4.6
VI-4.7
VI-4.8
VI-4.9
VI-4.10
VI-4.11
VI-4.12
VI-4.13
VI-4.14
VI-4.15
VI-4.16
VI-4.17

Contents

163
BBasish e e e e e e 163
BettiDiagram L 163
BettiMatrix e e 164
Bin . .o e 164
BinExp . . o . 165
Block . . . s 165
BlockMatrix e e e e e e e 166
Break e 167
Bringln L 167

169
Call . . e 169
CartesianProduct, CartesianProductList 170
Cast . . . 170
Catch . . . e 171
CFADDIOX .« o v v o e e e e s e e 172
CFADDroximants v i vt e e e 172
Characteristic e 172
Clao 173
Clear 173
ClearDenom 0 e e e e 174
CloSe . . . e e 174
CloseLog o e 174
Cocoallimits 174
CocoaPackagePath 175
Coefficients 175
CoeffOfTerm e e 176
Colon . . . e e 176
ColumnVectors e 177
Comp 177
COmPS « .« o o 178
Concat e 178
ConcatLists e e e e 178
Cond . . . e 179
ContFrac e 179
Count 180
CurrentRing o e 180

181
Dashes e e e e e e 181
Date e 181
DecimalStr e 181
Define e 182
Deg . . e 184
DeglexMat o e 184
DegRevLexMat o e 185
Delete e 185
Den . . . e 186
DensePoly e 186
Depth e 186
Der . e e e e e e e 188
Describe e 188
Destroy e 189
Det . e 190
DiagonalMat L 190
Diff . . 191

Contents

VI-4.18
VI-4.19
VI-4.20
VI-4.21
VI-4.22

VI-5 E
VI-5.1
VI-5.2
VI-5.3
VI-5.4
VI-5.5
VI-5.6
VI-5.7
VI-5.8
VI-5.9
VI-5.10

VI-6 F
VI-6.1
VI-6.2
VI-6.3
VI-6.4
VI-6.5
VI-6.6
VI-6.7
VI-6.8
VI-6.9
VI-6.10
VI-6.11
VI-6.12
VI-6.13
VI-6.14
VI-6.15
VI-6.16
VI-6.17

VI-7 G
VI-7.1
VI-7.2
VI-7.3
VI-7.4
VI-7.5
VI-7.6
VI-7.7
VI-7.8
VI-7.9
VI-7.10
VI-7.11
VI-7.12
VI-7.13
VI-7.14
VI-7.15
VI-7.16
VI-7.17
VI-7.18
VI-7.19

Dim . . e e

Error . . .o e
Eval . . . e
EvalBinExp o
EvalHilbertFn e
)

Fact e
Factor e e e e e e e
FactorMultiplicity
FGLMS . . . e
Fields e
First . . o e e e e e e
FirstNonZero e e
FirstNonZeroPos e
Flatten
FloatApprox o e
FloatStr e

Format e e e e e e
Fraction e e e e e e
Function e
Functions L e e e e e e

GB.Complete e
GB.GetBettiMatrixo e
GB.GetNthSyz e
GB.GetNthSyzShifts o
GB.GetRes o
GB.GetResLen oL e
GB.ResReport e
GB.Start_GBasis
GB.Start_MinGens
GB.Start_MinSyzMinGens L
GB.Start_Res
GB.Start_Syz
GB.Start_SyzMinGens e
GB.Stats

GBasish, and more
GBasisTimeout

10

VI-7.20
VI-7.21
VI-7.22
VI-7.23
VI-7.24
VI-7.25
VI-7.26
VI-7.27
VI-7.28
VI-7.29
VI-7.30

VI-8 H
VI-8.1
VI-8.2
VI-8.3
VI-8.4
VI-8.5
VI-8.6
VI-8.7
VI-8.8
VI-8.9
VI-8.10
VI-8.11
VI-8.12
VI-8.13
VI-8.14
VI-8.15
VI-8.16
VI-8.17
VI-8.18
VI-8.19
VI-8.20
VI-8.21
VI-8.22
VI-8.23
VI-8.24
VI-8.25
VI-8.26
VI-8.27

VI-9 1
VI-9.1
VI-9.2
VI-9.3
VI-9.4
VI-9.5
VI-9.6
VI-9.7
VI-9.8
VI-9.9
VI-9.10
VI-9.11
VI-9.12
VI-9.13
VI-9.14
VI-9.15

Contents

GBM . e 219
GCD . . 220
GCDFreeBasis o o i e e e 220
GenericPoints L e e e e 221
GenRepr L 221
GENS 222
Get . 222
GetEnv . . . 223
GetErrMesg L L 223
Gin, GInb 223
GlobalMemory e e 224

225
H.Browse e e e e e e 225
H.Commands 225
HMan e e e e e e e 225
H.OutCommands e e 226
H.OutManual e 226
H.SetMore e 226
H.Syntax o o e 227
H.Tips . . o o o 227
H.Toc e 228
H.Tutorial e 228
H.UnSetMore e 228
HColon e 228
Head 229
Help . . . o e 229
HGBM . . . e e 230
Hilbert e 231
HilbertBasis e 231
HilbertFn e 232
HilbertPoly o o e 232
HilbertSeries 232
HilbertSeriesMultiDeg o 233
HilbertSeriesShifts e 234
Hlntersection e e e e e e e e 234
HlIntersectionList e e e 235
Homogenized L 235
HSaturation e e 235
HVector e 236

237
Ideal e 237
IdealAndSeparatorsOfPoints L 237
IdealAndSeparatorsOfProjectivePoints o L. 238
IdealOfPoints 239
IdealOfProjectivePoints 240
Identity o e 241
I e 241
ILogBase 242
Image 242
In e 244
Indet e 244
IndetInd e 245
IndetIndex e 245
IndetName e 245
Indets e e e e e 246

Contents

VI-9.16
VI-9.17
VI-9.18
VI-9.19
VI-9.20
VI-9.21
VI-9.22
VI-9.23
VI-9.24
VI-9.25
VI-9.26
VI-9.27
VI-9.28
VI-9.29
VI-9.30
VI-9.31
VI-9.32
VI-9.33
VI-9.34
VI-9.35
VI-9.36
VI-9.37
VI-9.38
VI-9.39
VI-9.40
VI-9.41
VI1-9.42
VI-9.43
VI-9.44

VI-10J
VI-10.1

VI-11 K

VI-12 L
VI-12.1
VI-12.2
VI-12.3
VI-12.4
VI-12.5
VI-12.6
VI-12.7
VI-12.8
VI-12.9
VI-12.10
VI-12.11
VI-12.12
VI-12.13
VI-12.14
VI-12.15
VI-12.16

Insert L e
Interpolate e
Interreduce, Interreduced
Intersection e
Intersectionlist L e
Inverse e
IO.SprintTrunc e
Troot . . . o e
IsAntiSymmetric
IsDefined e e
IsDiagonal e e
IsEven, IsOdd e
IsHomog o e e
IsIn . . . o e
IsLexSegment L e
IsNumber
IsPositiveGrading
IsPPrime e
IsPrime e e
Isart . . . o e
IsServerReady e
IsStable e
IsStronglyStable
IsSubset e

IsTermOrdering o
IsTreed o e
IsZero e

Jacoblan e e e e

LinearSimplify o o
LinKer e e e e e e
LinSol e
List . . e e e e e

Log . o e e

LPoOs . . . e e e e e e e

11

246
247
247
248
249
249
249
250
250
251
251
251
252
252
253
253
253
254
254
254
255
255
255
256
256
256
257
257
258

259
259

261

12 Contents

VI-13 M 273
VI-13.1 MakeCheck 273
VI-13.2 MakeSet s 273
VI-13.3 Man o s 273
VI-13.4 MantissaAndExponent Lo 275
VI-13.5 0 MapDown o o v o e e e e e e e e 275
VI-13.6 0 Mat . . . e e e e 276
VI-13.7 MatConcatHor e 276
VI-13.8 MatConcatVer e e e 277
VI-13.9 Max, Min o e e e 277
VI-13.10 MDeg . . . o o o e e e e 278
VI-13.11 MEmOry . . . v v e e e e e e e e e e e e e e 279
VI-13.12 MinGens o 0 e 279
VI-13.13 Minimalize o e 280
VI-13.14 Minimalized 280
VI-13.15 Minors 281
VI-13.16 MinSyzMinGens« . o o e 281
VI-13.17 Mod e 281
VI-13.18 Mod2Rat e 282
VI-13.19 Module e e e 282
VI-13.20 Monic . . . o o o o e e 283
VI-13.21 Monomials e e 283
VI-13.22 MonsInldeal e 284
VI-13.23 MOTe . . . v v ot o o e e e e e 284
VI-13.24 Multiplicity e e 285

VI-14 N 287
VI-14.1 Newld o e e 287
VI-14.2 NewList o o e e 288
VI-14.3 NewMat o e 288
VI-14.4 NewVector e 289
VI-14.5 NextPPrime e 289
VI-14.6 NextPrime e 289
VI-14.7 NF . e 290
VI-14.8 NFEsAreZero e 290
VI-14.9 NonZero 291
VI-14.10 Not, And, Or e 291
VI-14.11 NR . . . e 291
VI-14.12 Num o e 292
VI-14.13 NumComps . . . o o v o o o o e e e e e e 292
VI-14.14 Numerical. BBasisOfPointsb e 292
VI-14.15 Numerical. BBasisOfPointsInldeal5 293
VI-14.16 Numerical. FirstVanishingRelationsb 294
VI-14.17 Numerical. FirstVanishingRelationsInldeal5 294
VI-14.18 Numerical.GBasisOfPointsb 295
VI-14.19 Numerical. GBasisOfPointsInldeal5 295
VI-14.20 Numerical. HBasisOfPoints5 296
VI-14.21 Numerical. HBasisOfPointsInldeald 296
VI-14.22 Numerical.QR5 L e 297
VI-14.23 Numerical.SVD5 e 297

VI-14.24 NumlIndets 298

Contents

VI-15 O
VI-15.1
VI-15.2
VI-15.3
VI-15.4
VI-15.5
VI-15.6
VI-15.7
VI-15.8

VI-16 P
VI-16.1
VI-16.2
VI-16.3
VI-16.4
VI-16.5
VI-16.6
VI-16.7
VI-16.8
VI-16.9
VI-16.10
VI-16.11
VI-16.12
VI-16.13
VI-16.14
VI-16.15
VI-16.16
VI-16.17
VI-16.18
VI-16.19

VI-17 Q
VI-17.1
VI-17.2
VI-17.3

VI-18 R
VI-18.1
VI-18.2
VI-18.3
VI-18.4
VI-18.5
VI-18.6
VI-18.7
VI-18.8
VI-18.9
VI-18.10
VI-18.11
VI-18.12
VI-18.13
VI-18.14
VI-18.15
VI-18.16
VI-18.17
VI-18.18
VI-18.19
VI-18.20

OpenlFile e
OpenlString o e e
OpenLog o e
OpenOFile e
OpenOString o e e

Packages
Panel e
Panels
Partitions o e e e e e e
Permutations e
Pfaffian
PkgName oL
Poincare L e
PoincareMultiDeg
PoincareShifts L
Poly . . e e
PositiveGradingd
PowerMod e e e e e
PreprocessPtsh oL
PrimaryDecomposition
Print . . . e e e e e e
Print On e e
PrintLn e e e e e e e
Product e e e e e e e

Quit . . . e e

QuotientBasis e e e e e e e
QZP . . e e

Radical e
RadicalOfUnmixed e
Rand e
Randomize
Randomized e e e e e e
Rank e
RealRootRefine
RealRoots o e e e e e e e
Record e
ReducedGBasis
RefineGCDFreeBasis
RegularityIndex L e
Remove e e e e e e e e
Repeat o e
Res . e
Reset . . o o e e e e e e e
ResetPanels o e e e e e e
Resultant e
Return o e e e e e e
Reverse, Reversed L

14

VI-18.21
VI-18.22
VI-18.23
VI-18.24
VI-18.25
VI-18.26
VI-18.27

VI-19 S
VI-19.1
VI-19.2
VI-19.3
VI-194
VI-19.5
VI-19.6
VI-19.7
VI-19.8
VI-19.9
VI-19.10
VI-19.11
VI-19.12
VI-19.13
VI-19.14
VI-19.15
VI-19.16
VI-19.17
VI-19.18
VI-19.19
VI-19.20
VI-19.21
VI-19.22
VI-19.23
VI-19.24
VI-19.25
VI-19.26
VI-19.27
VI-19.28
VI-19.29

VI-20 T
VI-20.1
VI-20.2
VI-20.3
VI-20.4
VI-20.5
VI-20.6
VI-20.7
VI-20.8
VI-20.9
VI-20.10
VI-20.11

Contents

RevLexMat e 325
Ring o e 325
RingEnv . . . o o o e 326
RingEnvs e 327
RingEnvSet o 327
RMap e e 328
RootBound 328

329
Saturation e e e e e e e e e 329
ScalarProduct L 329
Seed 330
SeparatorsOfPoints 330
SeparatorsOfProjectivePoints 331
Set-Unset o oL 332
Shape L e e 332
SIN . . o e 333
SIZe . . 333
SKID .« o 334
SmoothFactor 334
SOTt . . o e e e 335
SortBy . . . e 335
Sorted e 336
SortedBy 336
SOUTCE . . . v v e o e e e e e 337
SPACES « o v v o e e e 337
Sprint . ..o 338
StarPrint e e e 338
Starting 339
Submato e 339
Subsets . .. e e e e e 340
Subst . . e e e 340
SUIM .« .o 341
Support . .o e 341
Sylvestero 342
SVZ . o o 342
SyzMinGens oL e e e 343
SyzOfGens e 343

345
Tag . o 345
Tagged 345
Tail . . . e 346
TensorMat e e 346
Toric o e e 346
Toric.CheckInput L 347
Transposed oL e 348
Tuples e 348
Type . o o e e 349
TypeOfCoefs o L e 349
Types . . o o e 350

Contents

VI-21 U
VI-21.1
VI-21.2
VI-21.3
VI-21.4
VI-21.5

VI-22 'V
VI-22.1
VI-22.2

VI-23 W
VI-23.1
VI-23.2
VI-23.3
VI-23.4
VI-23.5

VI-24 X
VI-24.1

VI-25 Z
VI-25.1

WeightsList
WeightsMatrix

WithoutNth

15

351
351
351
352
352
353

355
355
356

357
357
357
358
358
359

361
361

363

16

Contents

Part 1

17

Chapter I-1

Preamble

I-1.1 Version

-- Online Help : CoCoA 4.7 --
-- date : 2007/Mar/28 --

I-1.2 Preface

CoCoA is a system for doing “Computations in Commutative Algebra.” It is one of the projects of an active
research team in Computer Algebra at the University of Genova, Italy, and whose current members are: Lorenzo
Robbiano (team manager), John Abbott, Anna Bigatti, Massimo Caboara, Martin Kreuzer, David Perkinson,
Michael Abshoff, Karsten Hiddeman, and occasionally other researchers and students. Notable contributions
from outside the team have been received from Volker Augustin and Arndt Wills. Much of the original code
for CoCoA was written by Gianfranco Niesi and Antonio Capani.

I-1.3 System Distribution

CoCoA is public domain software, available at
“http://cocoa.dima.unige.it”
where there is also a great deal of information about the system. From there you can access to the CoCoAFo-
rum and the CoCoAWiki, or directly at “http://cocoa.mathematik.uni-dortmund.de/forum/index.php” “http://cocoa.
Besides the main site in Genoa, Italy, there is a mirror of the official distribution: USA, West Coast
“http://www.reed.edu/cocoa”
CoCoA is distributed freely under the following condition: any research activity which uses CoCoA should
cite the system in the following form:

CoCoATeam
CoCoA, a system for doing Computations in Commutative Algebra,
Available at http://cocoa.dima.unige.it

(see also “http://cocoa.dima.unige.it/citing.html”)

The system can be freely redistributed to other users. New users should notify the CoCoA team at the email
address below so they can be included in a users list. All members of this list will be kept up to date about the
progress of the system.

19

20 Chapter I-1. Preamble

The system is distributed “as is”. The authors make no guarantee about the fitness of the system for
any particular application. They will not be liable for any direct, indirect, special, incidental or consequential
damages in connection with the use of the system or of the manual.

Bug reports, questions, and suggestions should be sent to the following email address:

cocoa (at) dima.unige.it

Comments on the online help system would be greatly appreciated. They may be sent to the above address
or to davidp (at) reed.edu.

I-1.4 System Requirements

CoCoA 4.7 runs on most common platforms. Please visit the CoCoA web site to see whether it is available
for the platform you wish to use. If the version you seek is absent let us know, and we will try to rectify the
situation.

I-1.5 Copyright and Trademarks

The product names mentioned in this manual are trademarks or registered trademarks of their manufacturers.

I-1.6 Acknowledgments

The CoCoA project is partly supported by:

* Department of Mathematics, University of Genova

* Department of Computer Science, University of Genova

* Consiglio Nazionale delle Ricerche

* Ministero dell’Universita‘ e della Ricerca Scientifica e Tecnologica

The author of the online help package would like to thank Tony Geramita, Lorenzo Robbiano and the CoCoA
team. Thanks to Antonio Capani and Gianfranco Niesi for patiently answering my questions and for allowing
me to use their “CoCoA User’s Manual, version 3.0b Draft,” from which the online help package borrows,
sometimes verbatim.

Part 11

Introduction to CoCoA

21

Chapter II-1

The CoCoA System

II-1.1 An Overview of the System

CoCoA is a computer algebra system for doing “Computations in Commutative Algebra’. Since its first version
CoCoA has been designed to offer maximum ease of use and flexibility to the mathematician with little or no
knowledge of computers. It is able to perform simple and sophisticated operations on multivariate polynomial
rings and on various data connected with them (ideals, modules, matrices, rational functions).

The system is capable of performing basic operations such as

sums, products, powers, derivatives, gcd, lcm of polynomials;
sums, products, powers, derivatives of rational functions;
sums, products, powers of ideals;

sums of modules;

sums, products, powers, determinants, adjoints of matrices;
operations between heterogeneous values, like the product
between an ideal and a polynomial, etc.

* ¥ X X X *

Besides these, more advanced operations are available. For example:

Groebner bases of ideals and modules;

syzygies of ideals and modules;

minimal free resolutions of ideals and modules;
intersection and division of ideals and modules;
inclusion and equality test for ideals and modules;
elimination of indeterminates;

homogenization of ideals;

Poincare series and Hilbert functions;
factorization of polynomials;

saturation of toric ideals.

* X X X X X X X X *

Every computation is performed within a “current” or “active” ring, but the user can easily define and switch
between many rings in a single CoCoA session.

CoCoA includes an extensive Pascal-like programming language, CoCoAL, that allows the user to customize
the system and extend the embedded library.

II-1.2 System Structure

CoCoA is written in C language and is available on several platforms. The core of the system is an implemen-
tation of Buchberger’s algorithm for computing Groebner bases of ideals and modules over a polynomial ring
whose coefficient ring is a field, and a variation of it for computing syzygies. The algorithm has been optimized
in several directions and is used as a building block for many operations. Most users can, however, completely
ignore the theory of Groebner bases and even their existence: CoCoA will do all the necessary “Groebner stuff”’
in the background. However, for optimum use of the system some knowledge of the theory is helpful.

23

24 Chapter II-1. The CoCoA System

The system interacts with the external world using a Low Level Protocol (LLP) that is independent of any
machine architecture. High level inputs from the user are translated into LLP-requests to the CoCoA kernel.
The LLP-answers are then translated back into high level, user-readable outputs.

II-1.3 Contributions

Important parts of the system have been developed by:

John Abbott : factorization, linear algebra, points, mainteiner
Anna Bigatti : Hilbert-Poincare series, toric ideals, help system
David Perkinson : help system
Karsten Hiddeman : help system
Volker Augustin : GUI (QT graphical user interface)
Alessandro Polverini : GUI
Fabian Theis : GUI
Michael Abshoff : GUI
Massimo Caboara : operations on ideals

II-1.4 CoCoA and Macaulay

Most of the standard scripts from the computer algebra system Macaulay (Classic) have been translated into
CoCoAL. For information, see
“http://www.matha.mathematik.uni-dortmund.de/ kreuzer/projects.html”

II-1.5 Pointers to the Literature

The following are articles which may be of interest to CoCoA users. Many of the algorithms discussed in these
articles have been implemented in CoCoA.

J. Abbott, “Univariate factorization over the integers,” Preprint (1998).

A M. Bigatti, “Computations of Hilbert-Poincare Series,” J. Pure Appl. Algebra, 119/3, 237-253 (1997).

A.M. Bigatti, A. Capani, G. Niesi, L. Robbiano, “Hilbert-Poincare Series and FElimination Problems,”
Preprint (1998).

A.M. Bigatti, R. La Scala, L. Robbiano, “Computing Toric Ideals,” Preprint (1998).

A.M. Bigatti, L. Robbiano, “Borel Sets and Sectional Matrices,” Annals of Combinatorics, 1, 197-213,
(1997)

M. Caboara, P. Conti, and C. Traverso, “Yet Another Ideal Decomposition Algorithm,” AAECC-12, Springer
LNCS 1255, 39-54, (1997).

M. Caboara, G. De Dominicis, L. Robbiano, “Multigraded Hilbert Functions and Buchberger Algorithm,” In
Proc. ISSAC*96, 72-78 (1996), Y.N. Lakshman, editor, New York. ACM Press.

A. Capani, G. De Dominicis, “Web Algebra,” In Proc. of WebNet 96. Association for the Advancement of
Computing in Education (AACE) Charlottesville, USA, (1996).

A. Capani, G. De Dominicis, G. Niesi, L. Robbiano, “Computing Minimal Finite Free Resolutions,” J. Pure
Appl. Algebra, 117/118, 105-117, (1997).

A. Capani, G. Niesi, “The CoCoA 8 Framework for a Family of Buchberger-like Algorithms,” In Groebner
Bases and Applications (Proc. of the Conf. 33 Years of Groebner Bases) , London Math. Soc. Lecture Notes
Series, Vol. 251, B. Buchberger and F. Winkler eds., Cambridge University Press, p. 338-350, (1998).

A. Capani, G. Niesi, “CoCoA 3.0 User’s Manual,” (1995).

A. Capani, G. Niesi, L. Robbiano, “Some Features of CoCoA 3,” Comput. Sci. J. of Moldova 4, 296-314,
(1996).

A. Giovini, T. Mora, G. Niesi, L.. Robbiano, C. Traverso, “‘One sugar cube, please’ or selection strategies in
the Buchberger algorithm,” In Proc. ISSAC‘91, 49-54, Stephen M. Watt, editor, New York, ACM Press, (1991).

A. Giovini and G. Niesi, “CoCoA: a user-friendly system for commutative algebra,” In Design and Imple-
mentation of Symbolic Computation Systems — International Symposium DISCO‘90, Lecture Notes in Comput.
Sci., 429, 20-29, Berlin, Springer Verlag, (1990).

B. Sturmfels, “Groebner Bases and Convexr Polytopes”, AMS University Lecture Series, Vol. 8 (1995).

II-1.5. Pointers to the Literature 25

SOME BOOKS AND ARTICLES MENTIONING CoCoA: W. W. Adams, P. Loustaunau, “An Introduction
to Groebner Bases,” Graduate Studies in Mathematics, AMS, Providence, R.I. (1994).

D. Cox, J. Little, D. O’shea, “Ideals, Varieties, and Algorithms,” Springer-Verlag, New York (1992).

M. Kreuzer, L. Robbiano, “Computational Commutative Algebra 1”7 Springer-Verlag, (2000).

L. Robbiano, “Groebner Bases and Statistics,” in “Groebner Bases and Applications,” (Proceedings of the
Conference: 33 Years of Groebner Bases), LMS Lecture Note Series, Vol. 251, B. Buchberger and F. Winkler
eds., Cambridge University Press, p. 79-204 (1998).

26

Chapter II-1.

The CoCoA System

Chapter 1I-2

Tutorial

I1-2.1 A Tutorial Introduction to CoCoA

This is an introduction to CoCoA, mainly through examples. It is just a small part of the online CoCoA manual.

If you are using an HTML version of the manual just click on “next”! The following few sections are for
those who call the manual from a CoCoA shell.

To learn more about finding information in the manual, enter “?” (without the quotes). For now, the only
essential command to know is “H.Browse ()”. Entering “H.Browse() ;” or “H.Browse (1) ;” will display the next
section of the manual. “H.Browse(0);” will redisplay the current section, and “H.Browse(-1);” will display
the previous section. Start browsing the tutorial now by entering “H.Browse();”.

I1-2.2 Setting Up CoCoA for the Tutorial

If you are using an HTML version of the manual skip this section.

Some of the information from the online manual (and results of CoCoA calculations, in general) may scroll
off of the screen. It is best to run CoCoA from a system that has scrollable windows with enough room to hold
the output from each CoCoA command.

Under X-windows, you might try running CoCoA from an xterm started with the command
“xterm -sb -sl 5127 (scroll bar enabled, saving 512 lines). In addition, you may want to increase the vertical
size of your window, e.g., “xterm -sb -sl 512 -geometry 80x40” under X-windows. Better yet: run CoCoA
from a shell within Emacs.

IF YOU DO NOT HAVE SCROLLABLE WINDOWS: enter the command “H.SetMore();” to receive
output 20 lines at a time. As long as there is output waiting to be printed, you will be prompted to enter
“More () ;” to get the next 20 lines. You may type “H.SetMore(N)” in order to get N lines at a time instead of
20.

Enter “H.Browse();” to continue. (The “Browse” command will be assumed from now on.)

I1-2.3 Entering Commands

While reading the tutorial it is highly recommended that you have a copy of CoCoA running in a separate
window in order to play with the examples presented.

If you are using the CoCoA GUI (Graphical User Interface) then you should follow the dedicated link
“Graphical User Interface” for entering commands.

To execute a CoCoA command, type it into the window, ending it with a semicolon, then press the “return’
key or “enter” key (depending on your system). A command can run over several lines; CoCoA will wait for
a semicolon before processing the command. Also, several commands may be written on a single line (each
ending with a semicolon).

See the next section for examples.

IMPORTANT NOTES for Macintosh OS 9 (up to version 4.0):

1. Only the “enter” key (on the far right of the keyboard is the one to use) will function to enter CoCoA
commands. Experiment.

27

28 Chapter II-2. Tutorial

2. To enter multiple lines, one needs to highlight the lines using the mouse before hitting the “enter” key.
Otherwise, the enter key just feeds the line containing the cursor to CoCoA.

1I-2.4 Examples of Entering Commands

Here are some examples of entering simple commands in CoCoA. (Macintosh OS9 and GUT users please remem-
ber the special instructions made in the previous section.)

example

NOTE: The output above appears just as it does in my CoCoA window. The examples in the online manual
will often be annotated. When CoCoA encounters *double dashes*, as above, it regards the rest of the line as
a comment.

1I-2.5 More on Entering Commands

One may save a sequence of commands in a file and read them into a CoCoA session with the “Source” (VI-
19.16 pg.337) command. For instance, if a sequence of CoCoA commands is saved in the file “MySession”, one
may enter

<< MySession;

to run the commands (give the full pathname, or store your file in the cocoa directory). User-defined functions
are often stored in files and sourced in this way.

II-2.6 After the Tutorial

Browsing through the examples in this tutorial may enable you to solve your particular problems. If not, or
to learn more about CoCoA in general, enter “?” to learn more about CoCoA’s online help. For example, you
will see that “H.Command ("")” gives a long annotated list of CoCoA commands, and “?keyword” will look for
information about “keyword’ in the manual.

The GUI Help System (html) and the printable/browsable version (pdf) contain exactly the same information
as the online help. You may choose your preferred format or exploit the different searching methods suiting
best your need.

With the following section, the tutorial proper begins. To see a table of contents for the tutorial, enter
“H.Toc(1,2)”. The command “H.Browse()” will then continue with the tutorial, or you may give the title of
a tutorial section to “?” to skip to that section.

II-2.7. Arithmetic 29

11-2.7 Arithmetic

Here are some first examples; they illustrate CoCoA evaluating arithmetic expressions.
example

(2+3) (1+1); -- multiplication, as usual
10

Fact(4);
24

For multiplication, one may use “*”, parentheses, or just a space.

II-2.8 Variables

Results from CoCoA calculations can be stored in variables. Variables, like CoCoA functions, must begin with
a capital letter or an error will result.

example
A := 3;
24;
6
b :=7;

7
B :=7;
A2 + B;
16

11-2.9 The Variable “It”

When CoCoA evaluates an expression, the result is usually assigned to the special CoCoA variable named “It”.
example

30 Chapter I1-2.

Tutorial

1I-2.10 Making Lists

The following example illustrates the use of lists in CoCoA.

example
L := [2,3,"a string",[5,7],3,3]; -- L is now a list
L[3]; -- here is the 3rd component of L
a string
L[4]; -- the 4th component of L is a list, itself
[6, 71
L[4]1[2]; -- the 2nd component of the 4th component of L
7
L[4,2]; -- same as above
7

Append (L, "new") ;

L;

[2, 3, "a string", [5, 7], 3, 3, "new"]

-- insert 8 as the 4th component of L, shifting the other
-- entries to the right:

Insert(L,4,8);

L;

[2, 3, "a string", 8, [5, 7], 3, 3, "new"]
Remove(L,4); -- remove it again

L;

[2, 3, "a string", [5, 7], 3, 3, "new"]

Len(L); -- the number of components of L
7
MakeSet(L); -- same as L but with repeats removed

[2, 3, "a string", [5, 7], "new"]

1..5; -- a range of values
(1, 2, 3, 4, 5]

II-2.11. Setting Up a Ring 31

[X2 | X In 1..5]; -- a useful way to make lists

[1, 4, 9, 16, 25]

[1,2] >< [3,4] >< [6]; -- Cartesian product: use a greater-than
-- sign ">" and a less-than sign "<" to make
-- the operator "><".

[(f1, 3, 51, (1, 4, 51, [2, 3, 5], [2, 4, 5]]

II-2.11 Setting Up a Ring

A CoCoA session automatically starts with the default ring, R = Q[x,y,2]. The command “Use” (VI-21.4 pg.352)
is used to change rings. The following example shows how to create the ring Z/(5)[a,b,c] (the coefficient ring is
the integers mod 5). Once the ring has been declared, one may start to play with polynomials, ideals, modules,
and other constructions in that ring. In the ring declaration, the indeterminates are optionally separated by
commas, and note the use of two colons.

Some details on handling several rings is provided below in the section of the Tutorial entitled “Using More
Than One Ring” (I1-2.14 pg.33) and “Ring Mapping Example” (II-2.22 pg.39).
example

Use S ::= Z/(5)[a,b,c];

F := a-b;

I := Ideal(F~2,c);

I;

Ideal(a”2 - 2ab + b2, c)

J := Ideal(a-b);

I+ J;

Ideal(a"2 - 2ab + b™2, ¢, a - b)

Minimalized(It); -- find a minimal set of generators for I+J
Ideal(a - b, c)

1I-2.12 A Groebner Basis Example

A Groebner basis of an ideal I is calculated with the command “GBasis(I)”, as illustrated in the following
example.

Let 7 be a root of the equation #7 — x — 1 over the rationals. The minimal polynomial of (4r —1)/r® can
be found by computing the reduced Groebner basis of the ideal (27 — z — 1,23y — 42 + 1) with respect to the
lexicographic term-ordering with x > y.

7

example
Use R ::= Qlx,y], Lex;
Set Indentation; -- to improve the appearance of the output
G := GBasis(Ideal(x"7-x-1,x"3y-4x+1));
G;

[1602818757152090759440/34524608236181199361x - 4457540/5875764481y"7
- 47746460716124220/34524608236181199361y°6 +
890175715271333840/34524608236181199361y"°5 -
3541992534667352220/34524608236181199361y"4 -
55943894513139464160/34524608236181199361y"3 -
56473654361333280980/34524608236181199361y"2 -
27971979712025453040/34524608236181199361y -
400704689288022689860/34524608236181199361, 1/16384y"7 - 5/16384y~6
+ 147/16384y"4 + 5/128y~3 - 31/16384y~2 + 17/128y - 20479/16384]

32 Chapter II-2. Tutorial

Len(G);

2

F := 16384*G[2]; -- clear denominators
F;

y°7 - 5y"6 + 147y"4 + 640y°3 - 31y"2 + 2176y - 20479

The Groebner basis is reported as a list with two elements. The second gives a univariate polynomial which
is the minimal polynomial for 7.

Note that the statement declaring the ring includes the modifier, “Lex”. Without this modifier, the default
term-ordering, DegRevLex, is used. The command “Set Indentation” forces each polynomial of the Groebner
basis to be printed on a new line.

11-2.13 Eliminating Variables

The Cartesian equations of the space curve parametrized by
t—— > (t31 + t67t87t10)
can be found by eliminating the indeterminate t in the ideal (¢3! +#5 — 2, ¢% — 3, 10 — 2).
example

Use R ::= Q[t,x,y,z];
Set Indentation;
Elim(t,Ideal(t"31+t"6-x, t"8-y, t°10-2));
Ideal(
y°5 - z74,
-y"4z"5 + y"4 - 2xy~2z + x72z72,
-z"8 - 2xy~3 + x"2yz + z73,
2xy~4z"4 + yz°7 + 3x72y"2 - 2x73z - yz"2,
-y~2z°6 - 1/2xz"7 + 1/2x"3y + y~2z - 3/2xz"2,
-1/3x"2y~4z"3 - y~3z"5 - 2/3xyz"6 + 1/3x"4 + y~3 - 4/3xyz)

With the command “Elim” (VI-5.2 pg.195), CoCoA automatically switches to a term-ordering suitable for
eliminating the variable ¢, then changes back to the declared term-ordering (in this case the default term-
ordering, DegRevLex).

One may see the entire Groebner basis for our ideal with respect to the elimination term-ordering for ¢ as
follows:
example

Use R ::= Q[t,x,y,z], Elim(t);
Set Indentation;
GBasis(Ideal(t~31+t"6-x, t"8-y, t710-2));
L
-t72y + z,
y°5 - z74,
-t76 - tz"3 + x,
-tz"4 - y°2 + xz,
-ty"2 + txz - y 4z,
-y~4z"5 + y"4 - 2xy~2z + x"2z72,
-z"8 - 2xy"3 + x"2yz + z73,
2xy~4z"4 + yz°7 + 3x72y"2 - 2x73z - yz"2,
tx"2y - tz72 - y"2z73 - xz74,
2txyz"3 - z°7 - x72y + 272,
-y"2z°6 - 1/2x2"7 + 1/2x"3y + y~"2z - 3/2xz"2,
t72x - tx72z72 + xy"4z"2 + yz'5 - y,
t72z + 2txz"3 - y"4z"3 - x72,

II-2.14. Using More Than One Ring 33

-3tx"2z"3 + 2xy~4z"3 + yz'6 + x"3 - yz,
-1/3x"2y~4z"3 - y~3z"5 - 2/3xyz"6 + 1/3x"4 + y~3 - 4/3xyz,
1/3tx"3 - 1/3tyz - 1/3x"2y"4 - 1/3y~3z"2 - 1/3xyz"3]

I1-2.14 Using More Than One Ring

In CoCoA, every calculation takes place in a “current” or “active” ring. Ring-dependent objects defined by the
user such as polynomials, ideals, and modules are automatically labeled by the current ring. Objects that do
not depend essentially on the ring, e.g., lists or matrices of integers, do not get labeled.

CoCoA automatically starts with the ring R = QJx,y,z]. The following example illustrates setting up a
ring with the construction “::=” and changing rings with the command “Use” (VI-21.4 pg.352). One may
temporarily change rings with the command “Using” (VI-21.5 pg.353). The example assumes that you do not
already have a ring with identifier “S”.

example
Use R ::= Q[x,y]; -- declare and use a ring R
F = (x+y)~3;
F;
x"3 + 3x72y + 3xy~2 + y°3
M := [1,"test",2];
S ::= Qlx,y,z,a,b]; -- declare a ring S with indeterminates x,y,z,a,b
Use S; -- switch to the ring S
F; -- F is labeled by ring R
R :: x"3 + 3x™2y + 3xy"2 + y~3
M; -- this list is not labeled R since its elements are not
-- ring dependent (e.g., "1" is considered a separate integer, not
-- part of the ring R)
[1, "test", 2]
F := Ideal(a"2+b"2); -- change the definition of F
Use R; -- switch back to R
F; -- the old F no longer exists
S :: Ideal(a™2 + b~2)
GBasis(F); -- built in functions automatically recognize the ring
[S:: a"2 + b~2]

I11-2.15 Substitutions

To substitute a list of numbers or polynomials for the indeterminates (in the order specified by the definition

of the ring), one may use the function “Eval” (VI-5.7 pg.197). To substitute out of order, use the function
“Subst” (VI-19.23 pg.340).

example

Use R ::= Qlx,y,z];

F 1= x"2+y"2+z72;

Eval(F,[1]); -- substitute x=1

y2+z"2+1

Eval(F,[1,2,3]); -- substitute x=1, y=2, z=3
14

Subst(F,y,2); -- substitute y=2

34 Chapter II-2. Tutorial

X2 +z72 + 4

Eval(F,[x,2,z]); -- same as above

X2 + z72 + 4

Subst(F, [[y,y"2],[z,2z"2]]); -- substitute y~2 for y, z"2 for z
y4 +z74 + x72

Eval(Ideal(F),[x"2,z]); -- substitute x"2 for x, z for y
Ideal(x"4 + 2z"2)

I1-2.16 First Functions

CoCoA’s gamut of functions can be easily extended with user-defined functions. Longer functions are usually
cut-and-pasted from a text editor into a CoCoA session. If the functions are to be used repeatedly, they can be
saved in a separate text file and read into a CoCoA session with the “Source” (VI-19.16 pg.337) command (or
“<<”). The usual way to define a function is with the syntax:

Define < FunctionName >(< argument list >) < Commands > EndDefine;

NOTE: Variables defined within a function are usually local to that function and disappear after the function
returns. Normally, the only variables accessible within a function are the function’s arguments and local
variables. (For the exceptions, see the section of the manual entitled “Global Memory” (III-8.3 pg.68).)

example

Define Square(X) -- a simple function
Return X~2;

EndDefine;

Square(3);

Define IsPrime(X) -- a more complicated function
If Type(X) <> INT Then Return Error("Expected INT") EndIf;
I :=2;
While I72 <= X Do
If Mod(X,I) = O Then Return False EndIf;
I := I+1;
EndWhile;
Return TRUE;
EndDefine; -- end of function definition
IsPrime(4);
FALSE
Define Test(A,B) -- a function with two arguments
Sum := A+B;
Prod := A%*B;
PrintLn("The sum of ",A," and ",B," is ",Sum,".");
Print("The product of ",A," and ",B," is ",Prod,".");
EndDefine;
Test (3,5);
The sum of 3 and 5 is 8.
The product of 3 and 5 is 15.

I1I-2.17. More First Functions 35

11-2.17 More First Functions

A user-defined function can have any number of parameters of any type, even a variable number of parameters.
Note that even a function with no parameters must be called with parentheses.
example

Define Test1()
PrintLn("This is a function with no parameters.");
For T := 1 To 10 Do
Print(I~2, " ");
EndFor;
EndDefine;
Test1();
This is a function with no parameters.
149 16 25 36 49 64 81 100
Define Test2(...) -- a variable number of parameters
If Len(ARGV) = O Then -- parameters are stored in the list ARGV
Return "Wrong number of parameters";
Elsif Len(ARGV) = 1 Then
Print("There is 1 parameter: ",ARGV[1]);

Else
Print ("There are ", Len(ARGV), " parameters: ");
Foreach P In ARGV Do
Print (P, " ");
EndForeach;
EndIf;
EndDefine;

Test2(1, 2, "string",3);
There are 4 parameters: 1 2 string 3

I1-2.18 Rings Inside User-Defined Functions

As mentioned earlier, user-defined functions cannot reference (non-global) variables except those defined within
the function or passed as arguments. However, functions can refer to rings via their identifiers and use them as
one would outside of a function.

When a function is called, it assumes the current ring and performs operations in that ring. One may
define new rings which will exist after the function returns, but one may not change the current ring with the
command “Use” (VI-21.4 pg.352). However, one may *temporarily* use a ring with the command “Using”
(VI-21.5 pg.353).

To make functions more portable, it may be useful to refer to the current ring not by its name but by using
the command “CurrentRing” (VI-3.26 pg.180).

Example 1.

Test uses the existing rings, R, S, and creates a new ring T. While a (non-global) *variable* defined in a
function will automatically disappear, a ring (and its name) will not.

example

Use R ::= Qlx,y,z];

S ::= Q[a,b];

Define Test()
Println (x+y)~2;
PrintLn S :: (a+b)~3;

T ::=2/(5)[t];
I :=T :: Ideal(t"2);
Print I;

EndDefine;

Test();

36 Chapter II-2. Tutorial

X"2 + 2xy + y°2
S :: a”3 + 3a"2b + 3ab”2 + b”3
T :: Ideal(t™2)
I; -- the variable I was local to the function
ERROR: Undefined variable I
CONTEXT: I
T; -- The function created the ring T. (Note: T is not a variable.)
z/(5) [t]
Example II
The use of “CurrentRing” (VI-3.26 pg.180) within a function.
example

Define Poincare2(I)

Return Poincare(CurrentRing()/I);
EndDefine;
Use R ::= Qlx,y];
Poincare2(Ideal(x"2,y"2));
(1 +2x + x72)

Example III
Creating a ring with a user-supplied name. For more information, see “Var” (VI-22.1 pg.355).
example

Define Create(Var(R));
Var(R) ::= Q[a,bl;

EndDefine;

Create("K");

Create("myring");
Var ("myring") ;
Qla,b]

Use Var("myring"); -- make myring current

Example IV
A more complicated example, creating rings whose names are automatically generated. See “NewId” (VI-14.1
pg.287) and “Var” (VI-22.1 pg.355) for more information.

example

Define CreateRing(I)

NewRingName := NewId();

Var (NewRingName) ::= Q[x[1..I]],Lex;

Return NewRingName;
EndDefine;
Use R ::= Q[x,y],DegRevLex;
Use S ::= Q[x,y,z],Lex;
N := 5;
For T := 1 To N Do

RingName := CreateRing(I); -- RingName is a string

Using Var(RingName) Do

PrintLn Indets();

II-2.19. Rational Normal Curve 37

EndUsing;
-- Destroy Var(RingName); -- uncomment if you want to destroy the tmp
-- ring

EndFor;

[x[1]1]

[x[1], x[2]]

[x[1]1, x[2], x[3]]

[x[1], x[2], x[3], x[4]]
[x[1]1, x[2], x[3]1, x[4], x[5]]

RingEnvs();
[IIQII, HQtII’ IIRII’ IISII’ "V#l", ||V#3Il, I|V#5l|, Ilv#?ll’ llv#gll, IlZlI]

11-2.19 Rational Normal Curve

In this example, we compute the ideal of the rational normal curve of degree N in PV then compute its Poincare
series for a range of values of V.

example

Define Minor2(M, I, J)
Return M[1,I] M[2,J] - M[2,I] M[1,J];
EndDefine;

Define Rational_Normal_Curve_Ideal(N)
-- first define the 2xN matrix whose 2x2 minors generate the ideal
M := NewMat(2,N);
For C := 0 To N-1 Do
M[1,C+1] := x[C];

M[2,C+1] := x[C+1];
EndFor;
-- then construct the generators of the ideal
L :=1[1;

For C1 := 1 To N-1 Do
For C2 := C1+1 To N Do
P := M[1,C1] M[2,C2] - M[2,C1] M[1,C2];
—-- determinant for columns C1,C2
Append (L,P)
EndFor;
EndFor;
Return Ideal(L);
EndDefine;

For N := 3 To 5 Do

S ::= Q[x[0..N]],Lex;
Println NewLine, "degree ", N;
Using S Do -- switch, temporarily, to ring S

I := Rational_Normal_Curve_Ideal(N);
Print ("Poincare series: "), Poincare(S/I);
EndUsing;
PrintLn;
EndFor; -- for statement

degree 3

38 Chapter II-2. Tutorial

Poincare series: (1 + 2x[0]) / (1-x[0])"2

degree 4
Poincare series: (1 + 3x[0]) / (1-x[0])~2

degree 5
Poincare series: (1 + 4x[0]) / (1-x[0])"2

I11I-2.20 Generic Minors

The following example computes the relations among the 2x2 minors of a generic 2xN matrix for a range of
values of N. Note the use of indeterminates with multiple indices.
example

Define Minor2(M, I, J)
Return M[1,I] M[2,J] - M[2,I] M[1,J];
EndDefine;

Define Det_SubAlgebra(N)
M := Mat([[x[I,J] | JIn 1..N] | I In 1..2]);
Cols := (1..N) >< (1..N);
L := [y[C[1],C[2]] - Minor2(M, C[1], C[2]) | C In Cols And C[1] < C[2]];
Return Ideal(l);

EndDefine;

Define Det_SubAlgebra_Print(N) -- calculate and print relations
J := Det_SubAlgebra(N);
PrintLn NewLine, "N = ", N;

PrintLn "Sub-algebra equations:";
Println Gens(Elim(x,J))
EndDefine;

Set Indentation;
For N := 3 To 5 Do
S ::= Z/(32003) [y[1..(N-1),2..N],x[1..2,1..N]];
Using S Do
Det_SubAlgebra_Print(N);
EndUsing
EndFor;

N=23
Sub-algebra equations:

[
0]

N =4
Sub-algebra equations:
L

N=25

Sub-algebra equations:

L
2y[2,51y[3,4] - 2y[2,4]y[3,5] + 2y[2,31y[4,5],
2y[1,51y[3,4] - 2y[1,41y[3,5] + 2y[1,3]y[4,5],

II-2.21. Leading Term (Initial) Ideals, Generic Polynomials 39

2y[1,5]y[2,4] - 2y[1,4]y[2,5] + 2y[1,2]y[4,5],
2y[1,51y[2,3] - 2y[1,3]1y[2,5] + 2y[1,2]y[3,5],
2y[1,4]y[2,3] - 2y[1,3]y[2,4] + 2y[1,2]y[3,4]]

I1-2.21 Leading Term (Initial) Ideals, Generic Polynomials

The following example produces the leading term (initial) ideal of the ideal generated by three “generic’
polynomials of degree 2 with respect to the lexicographic term-ordering.

example

Use R ::= Z/(32003) [x[1..4]1],Lex;
F := DensePoly(2);

L := [Randomized(F)
LT(Ideal(L));

Ideal(x[1]172, x[11x[2], x[11x[3], x[2]1°3, x[11x[4]1"2, x[2]"2x[3],

x[2]"2x[4]1°2, x[2]1x[3]1°3, x[2]1x[3]1"2x[4]"2, x[2]1x[3]1x[4]"4,
x[21x[4]1°6, x[3]1°8)

-- sum of all power-products of degree 2
| T In 1..3]; -- randomize coefficients

1I-2.22 Ring Mapping Example

If R is the current ring and E is an object in another ring, then the function “Image” (VI-9.9 pg.242) may be

used to map E into R by substituting polynomials from R for the indeterminates in E. (Also: see the command
“BringIn” (VI-2.9 pg.167) for a shortcut in certain cases.)

example
Use S ::= Qla,b,c];
I := Ideal(a"2+b"2,ab-c"2);
Use R ::= Q[x,y]; -- the current ring is R
F := RMap(x+y,x-y,y"2); —-— define a map F:S --> R sending a to x+y,
-- b to x-y, and ¢ to y~2
Image(I,F); -- the image of I under F
Ideal(2x"2 + 2y°2, -y"4 + x72 - y~2)

1I-2.23 Output to a File

The following example illustrates one way of saving CoCoA output to a file.

example

Use R ::= Q[t,x,y,z];
I := Ideal(t"2-x,t"5-y,t"7-2);
G := GBasis(I);

G;

[t72 - x, -tx"2 + y, -x"3 + ty, -xy + z, -ty"2 + x"2z, txz - y~2, y°3 - tz"2]
D := OpenOFile("MyFile"); -- open "MyFile" for output from CoCoA

Print G On D; -- G is appended to the file "MyFile"

Close(D);

Text can be read from files using “OpenIFile” (VI-15.1 pg.299) and “Get” (VI-7.26 pg.222), and commands

can be executed from files using “Source” (VI-19.16 pg.337). One may also keep a log of a CoCoA session (see
“OpenLog” (VI-15.3 pg.300))

40 Chapter II-2. Tutorial

11-2.24 Finite Point Sets: Buchberger-Moeller

CoCoA includes an implementation of the Buchberger-Moeller algorithm for efficient computations dealing with
finite sets of points. These functions include:

* GBM, HGBM - intersection of ideals for zero-dimensional schemes

* Ideal AndSeparatorsOfPoints — ideal and separators for affine points

* Ideal AndSeparatorsOfProjectivePoints — ideal and separators for points

* IdealOfPoints — ideal of a set of affine points

* IdealOfProjectivePoints — ideal of a set of projective points

* Interpolate — interpolating polynomial

* SeparatorsOfPoints — separators for affine points

* SeparatorsOfProjectivePoints — separators for projective points

Details about these functions may be found individually in the online manual. Briefly, the functions above
may be used to find the ideal of a set of points in affine or projective space along with a reduced Groebner
basis and separators. Separators are polynomials that take the value 1 on one of the points and 0 on the
remainder. The Buchberger-Moeller algorithm works *much* faster than the straightforward technique involving
intersecting ideals for the individual points.

example
Use R ::= Q[t,x,y,z];

Pts := GenericPoints(20); -- 20 random points in projective 3-space
X := IdealAndSeparatorsOfProjectivePoints(Pts);

Len(Gens(X.Ideal)); -- number of generators in the ideal

17

Hilbert(R/X.Ideal);

H(0) =1
H(1) = 4
H(2) = 10

H(t) = 20 for t >= 3

F := X.Separators[3];

[Eval(F,P)| P In Pts];

fo, o, 1, o, o, o, o, o, o, 0o, o, o, 0o, o, 0, 0, 0, 0, 0, O]
Res(R/X.Ideal); -- the resolution of the ideal

0 --> R"10(-6) --> R"24(-5) --> R"15(-4) --> R

11-2.25 Syzygies and Resolution Example

The following example, among other things, computes the resolution of ideals of sets of points.

example

Use R ::= Q[x,y,z];

X1 := [[0,0,1],[1,0,11,[2,0,11,[2,1,1]1]; -- 4 points in the projective
-- plane

X2 := [[0,0,1],([1,0,1],(0,1,1],[1,1,1]]; -- 4 more points

I1 := IdealOfProjectivePoints(X1);

I2 := IdealOfProjectivePoints(X2);

Hilbert(R/I1); -- the Hilbert function of X1

H() =1

H(1) = 3

H(x) =4 for t >= 2

Hilbert(R/I2) = Hilbert(R/I1); -- The Hilbert functions for X1 and X2

-— are the same
TRUE

II-2.26. Factoring Polynomials

Res(R/I1); -- but the resolutions ...
0 -=> R(-3) (+)R(-4) --> R"2(-2) (+)R(-3) --> R
Res(R/I2); -- are different.
0 --> R(-4) --> R"2(-2) --> R
Describe Res(R/I1); -- more information about the resolution for X1
Mat ([
[xy - 2yz, y°2 - yz, x"3 - 3x72z + 2xz"2]
D
Mat ([
ly - z, x°2 - xz],
[-x + 2z, 0],
[0, -yl

Syz(I1,1); -- the first syzygy module for X1
Module([y - z, -x + 2z, 0], [x"2 - xz, 0, -yl)

41

1I-2.26 Factoring Polynomials

CoCoA can factor a polynomial over its coefficient ring.
example

Use R ::= Qlx,y];

F := x712 - 37x"11 + 608x"10 - 5852x"9 + 36642x"8 - 156786x"7 + 468752x"6
- 984128x~5 + 1437157x"4 - 1422337x"3 + 905880x~2 - 333900x + 54000;

Factor (F) ;

[(x-2,1], [x-4, 1], [x-6, 1], [x-3, 2], [x -5, 3], [x -1, 4]]

F = (x+y) "2%(x"2y+y~2x+3);

F;

x"4y + 3x"3y"2 + 3x72y"3 + xy"4 + 3x72 + 6xy + 3y~2

Factor(F); -- multivariate factorization

[[x"2y + xy"2 + 3, 1], [x +y, 2]1]

Use Z/(37) [x];

Factor(x~6-1);

[[x -1, 1], [x+1, 1], [x + 10, 1], [x + 11, 11, [x - 11, 1], [x - 10, 1]]

42

Chapter II-2. Tutorial

Part II1

The CoCoA Programming Language

43

Chapter III-1

Introduction to CoCoA Programming

III-1.1 An Overview of CoCoA Programming

The CoCoA system includes a full-fledged high level programming language, CoCoAL, complete with loops,
branching, scoping of variables, and input/output control. The language is used whenever one issues commands
during a CoCoA session. A sequence of commands may be stored in a text file and then read into a CoCoA
session using the “Source” (VI-19.16 pg.337) command.

The most important construct in CoCoA programming is the user-defined function, created with “Define”
(VI-4.4 pg.182). A user-defined function can take any number of arguments, of any types, perform CoCoA
commands, and return values. Collections of these functions can be stored in text files, as mentioned in the
preceding paragraph, or formed into CoCoA “packages,” to be made available for general use.

45

46

Chapter III-1. Introduction to CoCoA Programming

Chapter 1I1-2

Language Elements

I1I-2.1 Character Set and Special Symbols

The CoCoA character set consists of the 26 lower case letters, the 26 upper case letters, the 10 digits and the
special characters listed in the table below. Note that the special character “|” looks a bit different on some
keyboards (its ascii code is 124).

blank underscore (left parenthesis |

+ plus = equal) right parenthesis |
< 1less than [left bracket |

* asterisk < greater than [right bracket |
| > single quote |

|

|

|

/ slash vertical bar

: colon . period " " double quote
= caret ; semicolon

, comma % percent

Special Characters

The character-groups listed in the table below are special symbols in CoCoA

| := assign .. range |
| << input from // start line comment |
| <> not equal - start line comment |
| <= 1less than or equal to /* start comment |
| >= greater than or equal to x/ end comment |
| >< Cartesian product i1 ring casting |
| ::= ring definition ... dots |

Special Character-groups

I11-2.2 Identifiers

There are two types of identifiers or names.

* Identifiers of ring indeterminates. They must begin with lower case letters.

* Predefined or user-defined names (functions and CoCoAL variables). They must begin with upper case
letters.

II1-2.3 Names of Indeterminates

Each indeterminate of a polynomial ring may have one of the following forms:

47

48 Chapter III-2. Language Elements

* a single lower case letter; * a single lower case letter, indexed by one or more integer expressions, separated
by commas, and enclosed by square brackets, e.g. x[1,3+5,2].

II1-2.4 Reserved Names

The names in the following tables are reserved and cannot be used otherwise. The names in the first table
are case insensitive (e.g. CLEAR, Clear and ClEaR are all reserved). The names in the second table are case
sensitive.

| Alias And Block Catch Ciao |
| Clear Cond Define Delete Describe |
| Destroy Do Elif Else End |
| EndBlock EndCatch EndCond EndDefine EndFor |
| EndForeach EndIf EndPackage EndRepeat EndUsing |
| EndWhile Eof False For Foreach |
| Global Help If In IsIn

| NewLine Not On Or Package |
| Print Println Quit Repeat Record |
| Return Set Skip Source Step |
| Then Time To True Unset |
| Until Use Using Var While |

| BOOL Deglex DegRevLex DEVICE ERROR |
| FUNCTION IDEAL INT LIST Lex |
| MAT MODULE NULL Null PANEL |
| POLY PosTo RAT RATFUN RING |
| STRING TAGGED ToPos TYPE VECTOR |
| Xel ZMOD |

Case sensitive reserved names

I11-2.5 Comments

A comment begins with the symbol “/*” and ends with the symbol “*/”. Comments may contain any number
of characters and are always treated as white space. Comments may be nested and may span several lines.

In addition, text starting with “//” or “-=" up to the end of a line is also considered comment.

example
// This is a line comment
Print 1+41; -- a command followed by a comment

/* example of /* nested */ comment */

III-2.6 Data Types

Each CoCoA object has a type. The possible types are:

BOOL : A boolean. The boolean constants are TRUE and FALSE.
DEVICE : For input/output.
ERROR : Objects of this type are used in error-handling.

FUNCTION : A CoCoA-defined function.

I11-2.7. Commands and Functions for Data Types 49

IDEAL
INT
LIST
MAT
MODULE
NULL
POLY
RAT
RATFUN
RECORD
RING
STRING
TAGGED
TYPE
VECTOR
ZM0OD

: An ideal.

: An arbitrary precision integer.

: A list.

: A matrix.

: A submodule of a free module.

: The null constant is Null.

: A polynomial.

: An arbitrary precision rational number.

: A rational function.

: A record is a set of bindings, name --> object.

: A base ring, a polynomial ring, or a quotient ring.
: A string.

: Used to help in printing complicated objects.

: Returned by the function ‘‘\verb&Type&’’, for example.
: A vector.

: An integer modulo another integer, e.g. 3 % 5.

The types are partially ordered by inclusion of the sets that they represent, as follows:

MAT < LIST

VECTOR < LIST
INT < RAT < POLY < RATFUN
ZMOD < POLY < RATFUN (if compatible).

In the manual, OBJECT is used to refer to an arbitrary CoCoA type. It is not a type itself.

I11-2.7 Commands and Functions for Data Types

The following are commands and functions for data types:

Cast type conversion

Max, Min a maximum or minimum element of a sequence or list
Shape extended list of types involved in an expression

Type the data type of an expression

Type0fCoeffs type of the coefficients of the current ring

Types lists all data types

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

50

Chapter III-2. Language Elements

Chapter III-3

Operators

II1I-3.1 CoCoA Operators

In CoCoA there are 5 main types of operators: algebraic operators, relational operators, boolean operators,
selection operators, and the range operator. There is also an n-ary operator “><” for forming Cartesian products
of lists and an operator “::” used in defining rings.

The meaning of an operator depends on the types of its operands; the “+” in the expression “A + B”
represents the sum of polynomials, or of ideals, or of matrices, etc. according to the type of A and B.

The multiplication symbol “*” can always be omitted. The expression “F(E)” is intrinsically ambiguous;
it can be the variable F multiplied by the parenthesized expression E, or the application of the function F to
the argument E. CoCoA always interprets this expression in the latter way. In the former case the user must
separate F from the left parenthesis with a blank or an “*x”.

The CoCoA operators are, from the highest to the lowest priority:

no. (selection operators)
A

+ - (as unary operators)
*x =/

+ - (as binary operators)

Operations with equal priority are performed from left to right. When in doubt, parentheses may be used
to enforce a particular order of evaluation.

Furthermore there is the n-ary operator “><” (made by using a greater than sign “>” and a less than sign “<”)
for making Cartesian products of lists (see “CartesianProduct, CartesianProductList” (VI-3.2 pg.170)) and
the operator “::” for defining rings (see “New Rings” (IV-8.2 pg.103) and “Use” (VI-21.4 pg.352)).

I11-3.2 Algebraic Operators

The algebraic operators are:
+ - x / = -
The following table shows which operations the system can perform between two objects of the same or of
different types; the first column lists the type of the first operand and the first row lists the type of the second

operand. So, for example, the symbol “:” in the box on the seventh row and fourth column means that it is
possible to divide an ideal by a polynomial.

51

52 Chapter III-3. Operators

INT RAT ZMOD POLY RATFUN VECTOR IDEAL MODULE MAT LIST

INT +-%/" +-%x/ * +-%/ +-%/ * * * * *

RAT +-x/" +-x/ +-x/ +-x/ * * * * *

ZMOD *~ +-x/ +-x/ +-%/ * * * * *

POLY +-x/" +-x/ +-x/ +-x/ +-x/ * * * * *

RATFUN +-%/~ +-%x/ +-%/ +-%/ +-%/ * *

VECTOR * * * * +-

IDEAL *~ * * * +k

MODULE * * * * *

MAT *7 * * * +-x

LIST * * * * * +-
Algebraic operators

Remarks:

* Let F and G be two polynomials. If F is a multiple of G, then F/G is the polynomial obtained from
the division of F by G, otherwise F/G is a rational function (common factors are simplified). The functions
“Div” (VI-4.21 pg.192) and “Mod” (VI-13.17 pg.281) can be used to get the quotient and the remainder of a
polynomial division.

* Let L1 and Lo be two lists of the same length. Then L; + Lo is the list obtained by adding L; to Lo
componentwise.

*If T and J are both ideals or both modules, then I : J is the ideal consisting of all polynomials f such that
fgisin I for all g in J.

II1-3.3 Relational Operators

The relational operators are:
= <> < > <= >= IsIn

The operator “IsIn” (VI-9.29 pg.252) is quite flexible: see its manual for an explanation. The other relational
operators can be applied to two objects of the same type. The admissible types for “=” and “<>” are:

NULL, BOOL, STRING, TYPE, INT, RAT, ZMOD, POLY, RATFUN,
VECTOR, IDEAL, MODULE, MAT, LIST.

The admissible types for the other relational operators are:
STRING, TYPE, INT, RAT, IDEAL, MODULE.

The meaning of “<” for string is the lexicographic comparison. For ideals and modules “A < B” and “A <= B”
both mean that A is (not necessarily strictly) contained in B.
NOTE: It is sometimes hard to judge the type of an expression from the appearance of CoCoA output,

leading to confusing results from the relational operators. Here is an simple example:
example

.= ||3||;

Type (L) ;
STRING
Type(3);
INT

Tagged expressions are especially prone to causing confusion of this sort.

I11-3.4. Boolean Operators 53

I1I-3.4 Boolean Operators

The boolean operators are:
Not And Or

see “Introduction to Booleans” (IV-1.1 pg.85).

II1-3.5 Selection Operators
The selection operators are

(1

Let N be of type INT and let L be of type STRING, VECTOR, LIST, or MAT. Then the meaning of L[N]
depends on the type of L as explained in the following table:

| STRING string consisting of the N-th character of L. |
| VECTOR N-th component of L |
| LIST N-th element of L I
| MAT N-th element of L |

Selection Operator

If N is an identifier and L is of type RECORD, then “L.N” indicates the object contained in the field N of
the record L (see “Introduction to Records” (IV-5.1 pg.97) and “Records” (IV-5 pg.97)).

II1I-3.6 Range Operator

2

If M and N are of type INT, then the expression: “M .. N” returns

* the list “[M, M+1, ... ,N]”if M < N;

* the empty list, “[1”, otherwise.

Note: Large values for M and N are not permitted; typically they should lie in the range about —10° to
+10°.

If x and y are indeterminates in a ring, then “x .. y” gives the indeterminates between x and y in the order
they appear in the definition of the ring.
example

1..10;
[13 2, 3: 4: 5) 63 7) 8: 9, 10]

o4

Chapter III-3. Operators

Chapter I1I-4

Evaluation and Assignment

111-4.1 Evaluation

An expression is by itself a valid command. The effect of this command is that the expression is evaluated in
the current ring and its value is displayed.

The evaluation of an expression in CoCoA is normally performed in a full recursive evaluation mode. Usually
the result is the fully evaluated expression.

The result of the evaluation is automatically stored in the variable “It”.

example
2 + 2;
4
It + 3;
7
It;
7
X := b;
It;
7
The command “X := 5” is an assignment, not an evaluation; so it does not change the value of the variable
“It” .

If an error occurs during the evaluation of an expression, then the evaluation is interrupted and the user is
notified about the error.

II1-4.2 Assignment

An assignment command has the form
L :=E

where L is a variable and E is an expression. The assignment command binds the result of the evaluation of the
expression E to L in the working memory (see the chapter entitled “Memory Management” (I1I-8 pg.67)). If E
is dependent upon a ring, then L is labeled with that ring. The label is listed when L is evaluated in another
ring. Then command “RingEnv(L)” will return the label for L.

example
Use R ::= Q[t,x,y,z];
I := Ideal(x,y);
M := b;
N := 8;

55

56 Chapter I1I-4. Evaluation and Assignment

T := M+N;

P := Record[F = xz];

P.Degree := Deg(P.F);

P;

Record[Degree = 2, F = xz]

Use S ::= Q[a,b];

I; -- I is labeled by R since it depends on R
R :: Ideal(x, y)

T; -- T is not labeled by R

14

J := R:: Ideal(x"2-y); -- J contains an object dependent on R
J; -- since the ring S is active, J is labeled by R

R :: Ideal(x"2 - y)

For information about interacting with rings outside of the current ring, see “Accessing Other Rings” (IV-
8.11 pg.108) in the chapter entitled “Rings” (IV-8 pg.103).

To assign values to global variables, see “Introduction to Memory” (III-8.1 pg.67) or “Global Memory”
(I11-8.3 pg.68).

Chapter III-5

User-Defined Functions

I11-5.1 Introduction to User-Defined Functions

The most important construct in CoCoA programming is the user-defined function. These functions take
parameters, perform CoCoA commands, and return values. Collections of functions can be stored in text files
and read into CoCoA sessions using “Source” (VI-19.16 pg.337). To prevent name conflicts of the type that
are likely to arise if functions are to be made available for use by others, the functions can be collected in
“packages,” as described in a later chapter.

To learn about user functions, look up “Define” (VI-4.4 pg.182) (online, enter “?define”) for the complete
syntax and for examples. The “Tutorial” (II-2 pg.27) also contains several examples of functions.

I11-5.2 Commands and Functions for User-Defined Functions

User-defined functions can contain just about any CoCoA command and may refer to other user-defined func-
tions. The following are some commands that pertain particularly to functions:

Call apply a function to given arguments
Define define a function

Function return a function

Functions list the functions of a package

NewId create a new identifier
Return exit from a structured command
Var function calls by reference, other complex referencing

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

57

o8

Chapter III-5. User-Defined Functions

Chapter III-6

Flow Control: Conditional Statements
and Loops

I1I-6.1 Commands and Functions for Branching
The following are the CoCoA commands for constructing conditional statements:

Cond conditional expression
If conditional statement

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

II1-6.2 Commands and Functions for Loops
The following are the commands and functions for loops:

Break break out of a loop

For loop command

Foreach loop command

Repeat loop command

Return exit from a structured command
While loop command

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

59

60

Chapter I1I-6. Flow Control: Conditional Statements and Loops

Chapter III-7

Input /Output

I11-7.1 Introduction to 10

Input and output is implemented in CoCoA through the use of “devices”. At present, the official devices are:
(1) standard IO (the CoCoA window), (2) text files, and (3) strings. What this means is that it is possible to
read from or write to any of these places. The cases are discussed separately, below. Text files may be read
verbatim or—with the “Source” (VI-19.16 pg.337) command—be executed as CoCoA commands.

I11-7.2 Standard 10O

Standard IO is what takes places normally when one interacts with CoCoA via the CoCoA window. CoCoA
accepts and interprets strings typed in by the user and prints out expressions. If E is a CoCoA object, then the
command

E;

causes the value of E to be printed to the CoCoA window. One may also use the functions “Print” (VI-16.16
pg.310) and “PrintLn” (VI-16.18 pg.311) for more control over the format of the output.

The official devices that are being used here are “DEV.STDIN” and “DEV.QUT”. So for instance, the commands
“Get” (VI-7.26 pg.222) and “Print On” (VI-16.17 pg.311) can be used with the standard devices although they
are really meant to be used with the other devices. “Print E On DEV.OUT” is synonymous with “Print E”.
Also, one may use “Get(DEV.STDIN,10)”, for example, to get the next 10 characters typed in the CoCoA
window. Thus, clever use of “Get” (VI-7.26 pg.222) will allow your user-defined functions to prompt the user
for input, but normal practice is to pass variables to a function as arguments to that function.

I11-7.3 File IO

To print CoCoA output to a file, one first opens the file with “Open0File” (VI-15.4 pg.301) then prints to the
file using “Print On” (VI-16.17 pg.311).

To receive verbatim input from a file, one first opens the file with “OpenIFile” (VI-15.1 pg.299), then gets
characters from the file with “Get” (VI-7.26 pg.222). Actually, “Get” (VI-7.26 pg.222) gets a list of ascii codes
for the characters in the file. These can be converted to real characters using the function “Ascii” (VI-1.11

pg.162).

example
D := OpenOFile("my-file"); -- open text file with name "my-file",
-- creating it if necessary
Print "hello world" On D; -- append "hello world" to my-file
Close(D); -- close the file
D := OpenIFile("my-file"); -- open "my-file"
Get(D,10); -- get the first ten characters, in ascii code
[104, 101, 108, 108, 111, 32, 119, 111, 114, 108]

61

62 Chapter I1I-7. Input/Output

Ascii(It); —-- convert the ascii code
hello worl

Close(D);

To read and execute a sequence of CoCoA commands from a text file, one uses the “Source” (VI-19.16
pg-337) command. For instance, if the file “MyFile.coc” contains a list of CoCoA commands, then

Source (MyFile.coc);

reads and executes the commands.

I1I-7.4 String IO

To print CoCoA output to a string, on may use “OpenOString” (VI-15.5 pg.301) to “open” the string, then
“Print On” (VI-16.17 pg.311) to write to it. To read from a string, one may open the string for input with
“OpenIString” (VI-15.2 pg.299) then get characters from it with “Get” (VI-7.26 pg.222).

example
S := "hello world";
D := OpenIString("",S); -- open the string S for input to CoCoA
-- the first argument is just a name for the device
L := Get(D,7); -- read 7 characters from the string
L; -- ascii code
[104, 101, 108, 108, 111, 32, 119]
Ascii(L); -- convert ascii code to characters
hello w
Close(D); -- close device D
D := OpenOString(""); -- open a string for output from CoCoA
L := [1,2,3]; -- a list
Print L On D; -- print to D
D;
Record[Name = "", Type = "OString", Protocol = "CoCoAL"]
S := Cast(D,STRING); -- S is the string output printed on D
S; —-— a string
[1, 2, 3]
Print " more characters" On D; -- append to the existing output string
Cast (D,STRING) ;
[1, 2, 3] more characters

There are usually more direct ways to collect results in strings. For instance, if the output of a CoCoA
command is not already of type STRING, one may convert it to a string using “Sprint” (VI-19.18 pg.338).

I11-7.5 Commands and Functions for 10

The following are commands and functions for input/output:

III-7.6. Tagged Printing

63

Block group several commands into a single command
Close close a device

Closelog close a log of a CoCoA session

Format convert object to formatted string

Get read characters from a device

I0.SprintTrunc

convert to a string and truncate

Latex LaTeX formatting

More print a string, N lines at a time
OpenIFile open input file

OpenIString open input string

OpenLog open a log of a CoCoA session
OpenOFile open output file

OpenOString open output string

OpenSocket open a socket connection

Print print the value of an expression
Print On print to an output device
PrintLn print the value of an expression
Source read commands from a file or device
Sprint convert to a string

Tag returns the tag string of an object
Tagged tag an object for pretty printing
Untagged untag an object

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

I1I-7.6 Tagged Printing

Some CoCoA objects are intrinsically complicated, so printing them verbatim might be confusing. For this
reason a mechanism has been implemented which enables automatic pretty printing through the use of “tags”.
A user may “tag”’ any object with a string and then define how objects tagged with that string should be printed
or described. Commands that do not have to do with printing ignore the tag.

I1I-7.7 Tagging an Object

If E is any CoCoA object and S a string, then the function “Tagged(E,S)” returns the object E tagged with
the string S. The type of the returned object is “TAGGED(S)” (but the type of E is unchanged). The function
“Tag” (VI-20.1 pg.345) returns the tag string of an object, and the function “Untagged” (VI-21.3 pg.352) (or
“@”) returns the object, stripped of its tag.

example
L := ["Dave","March 14, 1959",372];
M := Tagged(L, "MiscData"); -- L has been tagged with the string "MiscData"
Type(L); -- L is a list
LIST
Type(M); -- M is a tagged object
TAGGED ("MiscData")
Tag(M); -- the tag string of M (it would be the empty string if M
-- where not a tagged object).
MiscData
M; -- Until a special print function is defined, the printing of L
-— and M is identical.
["Dave", "March 14, 1959", 372]
Untagged(M) = L; -- "Untagged" removes the tag from M, recovering L.

64 Chapter I1I-7. Input/Output

The next section explains how to define functions for pretty printing of tagged objects.

I1I-7.8 Printing a Tagged Object

Suppose the object E is tagged with the string S. When one tries to print E—say with “Print E” or just “E;”—
CoCoA looks for a user-defined function with name “Print_8”. If no such function is available, CoCoA prints
E as if it were not tagged, otherwise, it executes “Print_S”.

example

L := ["Dave","March 14, 1959",372]; -- continuing with the previous example
M := Tagged(L,"MiscData");
M; -- M is printed as normal in the absence of a function "Print_MiscData"
["Dave", "March 14, 1959", 372]
Define Print_MiscData(X) -- Exactly one parameter is required.

M := Untagged(X);

Print (M[1]);
EndDefine;
Print M; -- Now, any object tagged with the string "MiscData" will be

-- printed using Print_MiscData
Dave
M; -- Whenever printing of M is called for, "Print_MiscData" is executed.
Dave

The line “M := Untagged(X)” is actually not necessary here, but in general one may get into an infinite

loop trying to print X, a tagged object, from within the function that is being defined in order to print X, if
that makes sense. Untagging X prevents this problem.

I1I-7.9 Describing a Tagged Object

If the object E is tagged with the string S, then when the user enters the command “Describe E”, CoCoA first
looks for a user-defined function with name “Describe_S” and executes it; if not found, the output depends on
the type of Untagged(E).

example
Use R ::= Q[x,y,z];
I := Ideal(x-y~2,x-2"3);
I := Tagged(I,"MyIdeals"); -- I is now tagged with "MyIdeals"
Describe I; -- the default description of an ideal

Record[Type = IDEAL, Value = Record[Gens = [-y~2 + x, -2"3 + x]]]
Define Describe_MyIdeals(X)

Y := Untagged(X);

PrintLn("The generators are:");

Foreach G In Y.Gens Do

PrintLn(" ", G);
EndForeach;
EndDefine;
Describe I; -- Any object tagged with "MyIdeals" is now described

-- using "Describe_MyIdeals".
The generators are:
-y°2 + x

I11-7.10. Another Example Using Tags 65

-z"3 + x

I11-7.10 Another Example Using Tags

Here is one more example using tags. Note that CoCoA commands that do not have to do with printing ignore
tags.

example
N := Tagged(4,"Dots");
N;
4
Define Print_Dots (X)
For T := 1 To X Do
Print "."
EndFor
EndDefine;
N;
N+N; -- As long as printing is not involved, N is treated as if
-- it has no tag. In this case, the sum of two tagged objects
-- returns an integer, not another tagged object.
8
M := Tagged(12,"Dots");
M;

I11-7.11 Commands and Functions for Tags
The following are commands and functions involving tags:

Tag returns the tag string of an object
Tagged tag an object for pretty printing
Untagged untag an object

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

66

Chapter I1I-7. Input/Output

Chapter 1I11-8

Memory Management

III-8.1 Introduction to Memory

CoCoA has three types of memory: “working”, “global’, and “ring-bound” memory. Unlike previous versions
of CoCoA, starting with CoCoA 3.5, variables defined during a session are by default assigned to a *working
memory*, accessible from all rings (but not from user-defined functions). There are no longer variables that
are local to a particular ring. However, as in previous versions of CoCoA, one may define variables in the
global memory by using the prefix “MEMORY”. The word “global” now refers to the fact that these variables
are accessible not only to all rings but also to user-defined functions. A special class of global variables can be
stored in what is called the *ring-bound memory*. These variables are formed with the prefix “MEMORY .ENV.R”
where “R” is a ring identifier; they are “bound’ to the ring, which means that they are automatically destroyed
when their corresponding rings cease to exist. Otherwise, variables in the ring-bound memory behave exactly
as all other global variables. Most users will never need the ring-bound memory.
These three types of memory are discussed separately, below.

I11-8.2 Working Memory

The *working memory™ consists of all variables except those defined with the prefix “MEMORY”, e.g. “MEMORY.X”.
All variables in the working memory are accessible from all rings, but they are not accessible from within a
user-define function (see examples in the next section). The function “Memory” displays the contents of the
working memory. More information is provided by “Describe Memory()”.

Ring-dependent variables such as those containing polynomials, ideals, or modules, are labeled by their
corresponding rings. If the ring of a ring-dependent variable in the working memory is destroyed, the variable
will continue to exist, but labeled by a ring automatically generated by CoCoA. Once all variables dependent
on this new ring cease to exist, so does the ring.

example
Use R ::= Q[x,y,z];
Memory(); -- the working memory is empty
L]
I := Ideal(xy-z"3,x"2-yz);
X := 3;
M := Mat([[1,2],[3,41]1);
Memory () ;

["I", "It", "M", "X"]
Describe Memory() ;
———————————— [Memory] -----------
I = Ideal(-z"3 + xy, x"2 - yz)
It = ["I", "It", "M", "X"]
M = Mat ([

(1, 21,

67

68 Chapter III-8.

[3, 4]
D
X =23
Use S ::= Z/(3)[t]; -- switch to a different ring
X := t72+t+1; -- the identifier X is used again
Y :=7;
Describe Memory(); -- note that I is labeled by its ring

———————————— [Memory] ———--------
I =R :: Ideal(-z"3 + xy, x"2 - yz)
It = [HIH’ "It", "M", nxn]

M = Mat ([
[1, 21,
[3, 4]
D
X=t"2+t +1
Y=17
GBasis(I); -- The Groebner basis for the ideal in R can be calculated
-- even though the current ring is S.
[R :: x°2 -yz, R :: -2°3 + xy]
M~2;
Mat ([
[7, 101,
[156, 22]
D
Use R ::= Q[s,t]; -- redefine the ring R
I; -- Note that I is labeled by a new ring, automatically produced by

-— CoCoA. This ring will automatically cease to exist when there
—-- are no longer variables dependent upon it, as shown below.
R#17 :: Ideal(-z"3 + xy, x"2 - yz)
RingEnvs();
[IIQII, lIQtII’ IIRII, IIR#17II, IISII’ IIZII]

I :=3; -—— I is overwritten with an integer, and since it is the only
-- variable dependent on R#17, the ring R#17 ceases to exist.
RingEnvs(); -- Since the only variable that was dependent upon the
-- temporary ring "R#17" was overwritten, that ring is
-- destroyed.

[HQ", thn’ an’ nsn’ nzn]

Memory Management

II1-8.3 (Global Memory

Starting with CoCoA 3.5, a “global’ variable is one that is accessible from within a user-defined function. A
global variable is formed by using the prefix “MEMORY”. The special prefixes “DEV”, “ENV”, “ERR”, and “PKG” are
shorthand for “MEMORY.DEV”, “MEMORY.ENV”, etc. Any global variable prefixed by “MEMORY.ENV.R” where “R”
is the identifier of a ring, becomes part of the ring-bound memory discussed in the next section. A list of the
global variables which are not ring-bound is provided by the function “GlobalMemory” (VI-7.30 pg.224).

example

Use R ::= Qlx,y,z];
X :=5; -- a variable called "X" in the working memory
MEMORY.X := 7; -- a global variable

III-8.4. Ring-Bound Memory 69

Memory(); -- the working memory
[("It", "X"]
GlobalMemory(); -- the global memory
["DEV", IIENVII, "ERR.", "PKG", lIXll]
Define Test()
PrintLn(MEMORY.X) ;
MEMORY.X := "a new value";
PrintLn(X);
EndDefine;
—-— MEMORY.X is accessible from within a function
-- X is not accessible within a function (thus we get an error)
Test();

ERROR: Undefined variable X

CONTEXT: PrintLn(X)

MEMORY.X; -- the contents of the global memory can be changed from
-- within a function

a new value

Fields(MEMORY.ENV); -- a list of all defined rings

[IIQ"’ lthll’ IIRII’ llle]

I1I-8.4 Ring-Bound Memory

A variable prefixed by “MEMORY.ENV.R” where “R” is the identifier of a ring, becomes bound to the ring R. This
means that when R ceases to exist, so does the variable (unlike variables that are part of the working memory,
labeled by R: see “Working Memory” (ITI-8.2 pg.67), above). The collection of these variables comprises the
ring-bound memory. The variables bound to a ring R can be listed with the command “Memory(R)”. Note
that since ring-bound variables are, in particular, prefixed by “MEMORY”, they are also part of the global memory
discussed in the previous section.

Most users will never need ring-bound variables. Their main use is within functions which need to define
and use rings temporarily, destroying them (along with their variables) before returning.

The prefix “ENV” is shorthand for “MEMORY.ENV”.

example
Use R ::= Qlx,y,2];
X := Ideal(x,y); -- a variable in the current memory
ENV.R.Y := "bound to R"; -- a variable in the memory bound to R
Use S ::= Q[a,b];
Z := 6;
Memory(); -- the working memory
[x", "z"]
Memory(R); -- the memory bound to R

70 Chapter III-8. Memory Management

[IIYN]

Destroy R;

Memory () ;

[llItll’ IIXII’ llzll]

X; -- Since X is not in the ring-bound memory of R,
-- it is not destroyed. It was *dependent* on the ring R,
-- so the base ring of R has been given the new name R#5.

R#5 :: Ideal(x, y)

ENV.R.Y; -- this variable was destroyed along with R

ERROR: Unknown record field R

CONTEXT: ENV.R.Y

RingEnvs () ;

[IIQ"’ lthll’ llR#SH, IISH, HZ’I]

I1I-8.5 Commands and Functions for Memory

The following are commands and functions for memory:

Clear clear the working memory or a ring-bound memory
Delete delete variables from the working memory
Destroy delete rings

GlobalMemory contents of global memory

IsDefined check if an expression has been defined

Memory contents of local memory or ring-bound memory
RingEnvs names of all defined rings

Size the amount of memory used by an object

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

Chapter III-9

CoCoA Packages

II1-9.1 Introduction to Packages

User-defined functions may be saved in separate files and read into a CoCoA session using the “Source” (VI-
19.16 pg.337) command. If one sources several such files or, especially, if a file is to be made available for general
use, a possible problem arises from conflicting function names. If two functions with the same name are read
into a CoCoA session, only the one last read survives. To avoid this, functions may be collected in “packages”.

A CoCoA package is essentially a list of functions (made using the “Define” (VI-4.4 pg.182) command),
labeled with a long prefix. A function from a package is referred to by the package prefix plus the function
name. The user may type the full prefix, but the usual method is to create a short alias for the prefix. Details
are provided below, starting with a short example.

I11-9.2 First Example of a Package

The following is an example of a package. It could be typed into a window as-is during a CoCoA session, but
we will assume that it is stored in a file in the CoCoA directory under the name “one.cpkg”.
example

Package $contrib/toypackage

Define IsOne(N)
If N = 1 Then Return TRUE Else Return FALSE EndIf;
EndDefine;

Define Test(N)
If $.IsOne(N) Then
Print "The number 1."

Else
Print "Not the number 1."
EndIf;
EndDefine;
EndPackage; —— of toypackage

Below is output from a CoCoA session in which this package was used:

example
-- read in the package:
Source("one.cpkg") ;
Test(1); -- error here because the function "Test" is not defined

ERROR: Unknown operator Test
CONTEXT: Test(1)

71

72 Chapter I1I-9. CoCoA Packages

$contrib/toypackage.Test(1); -- this is the name of the function
-- we are looking for

The number 1.

Alias Toy := $contrib/toypackage; -- use an alias to save typing

Toy.Test(3);

Not the number 1.

Toy.IsOne(3);

FALSE

Once the package is read, the user can choose a “substitute prefir’ using the “Alias” (VI-1.7 pg.159)
command and in that way avoid conflicts between functions in various packages and save on typing.

Note one other thing: the function “IsOne” is used in the definition of “Test”. In that case, it is referred
to as “$.IsOne”. Otherwise, CoCoA would look for a global function, outside of the package, called “IsOne”.
Forgetting this kind of reference is a common source of errors when constructing a package.

I11-9.3 Package Essentials
A package begins with
Package $PackageName
and ends with
EndPackage;

PackageName is a string that will be used to identify the package. The dollar sign is required. There are no
restrictions on the string PackageName, but keep in mind that it serves to distinguish functions in the package
from those in all other CoCoA packages. A name of the form “contrib/subject” is typical.

In between the “Package” declaration and its “EndPackage” one may: (1) declare Aliases (see below), (2)
define functions, and (3) make comments (please).

If a function F in the package appears in the definition of another function within the package, it must be
referred to as “$.F” (or “$PackageName.F”, or using a local alias, see below).

Typically, the user will read in the package using the “Source” (VI-19.16 pg.337) command. After that, to
save on typing, the user will choose a global alias with which to refer to the package using the syntax:

Alias ShortName := $PackageName;

where ShortName is any convenient string, hopefully not conflicting with other global aliases. (A list of the
global aliases is returned by the function “Aliases” (VI-1.9 pg.160).)
A package function, F, is then called using the name “ShortName.F”.

I1I-9.4 Package Sourcing and Autoloading

As mentioned above, packages are usually saved in files and then read into a CoCoA session using the command
“Source” (VI-19.16 pg.337).
(I) Full path name, ordinary file sourcing.

package name: $mypackage
file name: this/is/my/stuff.cpkg

Suppose the name of your package is “$mypackage” and is kept in the file with full pathname
“this/is/my/stuff.cpkg”’. Then the package can be loaded into the session as usual with the command:

Source("this/is/my/stuff.cpkg");

II1-9.5. Global Aliases 73

Functions can then be called from the package using the package name, “$mypackage”, as a prefix (or using
aliases).
(IT) The standard package path, “$”-shortcut.

package name: $mypackage
file name: packages/mypackages/stuff.cpkg (relative to cocoa directory)

A package is in the “standard package path’ if its file is kept in the “packages’ directory inside the cocoa
directory. Suppose your package has name “$mypackage” and is kept in the file with pathname (relative to the
cocoa directory) “packages/mypackages/stuff.pkg”. Then the package can be read by passing this pathname
to “Source” (VI-19.16 pg.337), as above, but there are the following shortcuts:

Source ("$mypackages/stuff") ;
<<"$mypackages/stuff";
<<$mypackages/stuff; -- quotes are optional in this case

3

In other words, the prefix “$” is taking the place of “packages/” and the suffix
left off. Functions can then be called as in the previous case.
(III) Autoloading.

‘.cpkg” is (and must be)

package name: $mypackages/stuff
file name: packages/mypackages/stuff.cpkg (relative to cocoa directory)

Now suppose that the package is in the standard package path, as above, in the file with pathname (relative to
the cocoa directory) “packages/mypackages/stuff.cpkg”’. However, now assume that the name of the package
is “$mypackages/stuff”, i.e., that it matches the name of its file (without “packages/” and “.cpkg”). Then, if
any function from the package is called, say “$mypackages/stuff.MyFunction”, the package will automatically
be loaded. Of course, one may also source the package using either method I or II, from above.

* Initialize * NOTE: As explained in the section entitled “Package Initialization” (II1-9.8 pg.75), below,
no matter which method is used to source a package, any function in the package named “Initialize” will
automatically be executed when the package is loaded.

I11-9.5 Global Aliases

A global alias for a package is formed by using the command “Alias” (VI-1.7 pg.159) during a CoCoA session.
(Local aliases are formed with the same command, but are declared inside a package. They are for use only
within the package.) The syntax for “Alias” (VI-1.7 pg.159) is

Alias binding, ..., binding;

where a “binding” has the form

identifier := $PackageName

The function “Aliases” (VI-1.9 pg.160) prints a list of the global aliases.

example
Aliases();
H = $help
10 = $io
GB = $gb
HP = $hp
HL = $hilop
List = $list
Mat = $mat

Latex = $latex
LaTeX = $latex
Toric = $toric
Coclib = $coclib
TT = $abc

74 Chapter I1I-9. CoCoA Packages

Alias My := $my_package,
01d := $my_package/old_version;
Aliases();

HP $hp
BinRepr = $binrepr
SpPoly = $sppoly

HL = $hilop

H = $help

My = $my_package

01d = $my_package/old_version

Note: global aliases cannot be used in function definitions. This is to force independence of context. Inside
a function, one must use the complete package name. For example, “$gb.Step(M)M” is a valid statement inside
a function, but not “GB.Step(M)”.

I11-9.6 Local Aliases

A local alias is an alias declared inside a package, for use only within the package. A local alias can have the
same identifier as a global alias. Only local aliases are recognized within packages.

There are two uses for local aliases. First, recall that if the definition of function in a package uses another
function, F, also defined in the package, then F must be referred to using the package name as a prefix or, for
short, “$.F”. In this way, “$”, is an automatically a local alias for the package itself. One may choose another
alias, say “DD”, and write “DD.F”, instead. A second use for a local alias is to refer to a separate package. In
that way, one may refer to functions from that package inside the current package without typing out the full
package name.

Keep in mind that these aliases are used only to save typing. Examples appear below.

I1I1-9.7 More Examples of Packages

Here is a simple package for printing lists.
example

Package $contrib/list

Define About ()
Return "
Author: Antonio
Version: 1.0
Date: 18 July 1997

EndDefine;

Define PrintList(L)
Foreach X In L Do
Println X
EndForeach
EndDefine;

EndPackage;

Here is another package that takes a pair of objects and turns the pair into a list. Note the local alias used

to reference the previous package.
example

Package $contrib/pair

II1-9.8. Package Initialization 75

Alias L := $contrib/list; -- Local alias for another package.
-- This alias does not affect global
-- aliases.

Define Make(A,B)
Return [A,B];
EndDefine;

Define First(P)
Return P[1];
EndDefine;

Define Second(P)
Return P[2];
EndDefine;

Define PrintPairOfLists(P)
PrintLn "First list:";

L.PrintList($.First(P)); -- The local alias, L, is used here,

PrintLn "Second list:";

L.PrintList($.Second(P)) -- and here. ‘‘\verb&$&’’ refers to a function
EndDefine; -- defined in the current package.
EndPackage;

USING THE PACKAGES. After reading in the packages using “Source” (VI-19.16 pg.337) one may proceed

as follows to use them:
example

Alias P := $contrib/pair;

X := P.Make([x"2,x], [x,y,2]);
P.PrintPairOfLists(X);

First list:

x"2

X

Second list:

Note: suppose a package with identifier “$contrib/newlist” prints lists in another format. To switch
to this format in “$contrib/pair”, one need only change the alias for L from “$contrib/list” to
“$contrib/newlist”

I11-9.8 Package Initialization

Packages are often stored in files and read into a CoCoA session using the “Source” (VI-19.16 pg.337) command.
When a package is loaded, any function whose name is “Initialize” will automatically be executed. For
example, this feature may be used to print a message or initialized global variables when the package is read
into a session.

(Note: following this rule, if the first time you access package PKG is to make an explicit call to the function
PKG.Initialize() then the function will be called twice!)
example

Package $example
Define Initialize()
Print "CALLED INITIALIZE";
MEMORY .MyVar := 17;

76 Chapter I1I-9. CoCoA Packages

EndDefine;
EndPackage;
CALLED INITIALIZE
MEMORY .MyVar;

17

I11I-9.9 Sharing Your Package

If you create a package that others might find useful, please contact the CoCoA team by email at
“cocoa at dima.unige.it”.

Include comments in the package that:

* explain the use of the package

* list functions that are meant to be seen by the user

* give the syntax for these functions. (What are the arguments? What values are returned?)

* describe what each function does

* provide examples of the use of each function.

I1I-9.10 Commands and Functions for Packages

The following are commands and functions for packages:

Alias define aliases for package names
Alias In temporarily override global aliases
Aliases list of global aliases

Functions list the functions of a package
Packages list of loaded packages
PkgName returns the name of a package

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

I11-9.11 Supported Packages

Several packages are supported by the CoCoA team. These packages contain functions that are not built into
CoCoA because they are of a more specialized or experimental nature.
The supported packages are:

algmorph.cpkg -- K-algebra homomorphisms

CantStop -- the first game in CoCoA ;-)
conductor.cpkg -- conductor sequence of points
control.cpkg -- tools for geometric Control Theory
galois.cpkg -- computing in a cyclic extension
intprog.cpkg -- integer programming

invariants.cpkg -- generators of an algebra of invariants
matrixnormalform.cpkg -- Smith normal form of a matrix
primary.cpkg -- primary ideals

specvar.cpkg -- special varieties

stat.cpkg -- statistics, design of experiment
thmproving.cpkg -- geometrical theorem proving
typevectors.cpkg -- typevectors for ideals of points

All of these packages are included in /packages/contrib of the distribution of CoCoA. The packages are likely
to be updated more often than CoCoA, itself, and new packages may appear; so it may be worth checking at
the CoCoA distribution sites, e.g., “http://cocoa.dima.unige.it/”.

I11-9.12. K-Algebra Homomorphisms 7

HOW TO USE A SUPPORTED PACKAGE (1) save the package in /packages/contrib/, if neces-
sary; (2) to get the syntax, description, and examples of the main functions and a suggested alias for
the package, type “$contrib/"package_name".Man();” (3) to know the author and version number, type
“$contrib/"package_name".About () ;”

or just XX.Man(); XX.About() where XX is a defined alias (type “Aliases();” to get the list)

NOTE: The packages will load automatically when one of their functions is called (see “Package Sourcing
and Autoloading” (I11-9.4 pg.72)) for more information.

See below for more details about specific supported packages.

I11-9.12 K-Algebra Homomorphisms

Supported CoCoA Package

TITLE : algmorph.cpkg

DESCRIPTION : CoCoA package for computing K-algebra homomorphisms
and subalgebras

AUTHOR : A. Bigatti

LOADING INSTRUCTIONS
-- Enter
$contrib/algmorph.Man() ;
to get a complete description of the package including a suggested alias.
-- Enter
$contrib/algmorph.About () ;
to find the version number. You may want to check the CoCoA
homepage for the latest version.

I11-9.13 Galois Package

Supported CoCoA Package

TITLE : galois.cpkg

DESCRIPTION : CoCoA package for computing in a cyclic algebraic
extension

AUTHOR : A. Bigatti, D.La Macchia, F.Rossi

LOADING INSTRUCTIONS
-- Enter
$contrib/galois.Man() ;
to get a complete description of the package including a suggested alias.
-- Enter
$contrib/galois.About) ;
to find the version number. You may want to check the CoCoA
homepage for the latest version.

111-9.14 Integer Programming

Supported CoCoA Package

TITLE : intprog.cpkg

DESCRIPTION : CoCoA package for applying toric ideals to integer
programming

AUTHOR : A. Bigatti

LOADING INSTRUCTIONS
-- Enter

78 Chapter I1I-9. CoCoA Packages

$contrib/intprog.Man() ;
to get a complete description of the package including a suggested alias.
-- Enter
$contrib/intprog.About () ;
to find the version number. You may want to check the CoCoA
homepage for the latest version.

I11-9.15 Algebra of Invariants

Supported CoCoA Package

TITLE : invariants.cpkg
DESCRIPTION : CoCoA package for computing homogeneous generators of an

algebra of invariants, and for testing invariance of a polynomial
AUTHOR : A. Del Padrone

LOADING INSTRUCTIONS
-- Enter
$contrib/invariants.Man();
to get a complete description of the package including a suggested alias.
-- Enter
$contrib/invariants.About();
to find the version number. You may want to check the CoCoA
homepage for the latest version.

111-9.16 Primary Ideals

Supported CoCoA Package

TITLE : primary.cpkg

DESCRIPTION : CoCoA package for applying toric ideals to integer
programming

AUTHORS : A. Bigatti, L. Robbiano

LOADING INSTRUCTIONS
-- Enter
$contrib/primary.Man() ;
to get a complete description of the package including a suggested alias.
-- Enter
$contrib/primary.About () ;
to find the version number. You may want to check the CoCoA
homepage for the latest version.

I11-9.17 Special Varieties

Supported CoCoA Package

TITLE : specvar.cpkg

DESCRIPTION : CoCoA package for computing the Hilbert-Poincare
series of special varieties (Segre, Veronese, Rees).

AUTHORS : A. Bigatti, L. Robbiano

LOADING INSTRUCTIONS
-- Enter
$contrib/specvar.Man();
to get a complete description of the package including a suggested alias.

II1-9.18. Statistics

-— Enter
$contrib/specvar.About () ;
to find the version number. You may want to check the CoCoA
homepage for the latest version.

I11-9.18 Statistics

Supported CoCoA Package

TITLE : stat.cpkg
DESCRIPTION : package for design of experiments in statistics
AUTHOR : M. Caboara

LOADING INSTRUCTIONS
-- Enter
$contrib/stat.Man();
to get a complete description of the package including a suggested alias.
-- Enter
$contrib/stat.About();
to find the version number. You may want to check the CoCoA
homepage for the latest version.

I11-9.19 Geometrical Theorem-Proving

Supported CoCoA Package

TITLE : thmproving.cpkg
DESCRIPTION : CoCoA package for geometrical theorem-proving in euclidean space
AUTHOR : L. Bazzotti, G. Dalzotto

LOADING INSTRUCTIONS
-- Enter
$contrib/thmproving.Man() ;
to get a complete description of the package including a suggested alias.
-- Enter
$contrib/thmproving.About () ;
to find the version number. You may want to check the CoCoA
homepage for the latest version.

I11-9.20 Typevectors

Supported CoCoA Package

TITLE : typevectors.cpkg

DESCRIPTION : CoCoA package for computing type-vectors associated to
Hilbert functions of ideals of points

AUTHOR : E.Carlini, M.Stewart

LOADING INSTRUCTIONS
-— Enter
$contrib/typevectors.Man();
to get a complete description of the package including a suggested alias.
-- Enter
$contrib/typevectors.About () ;
to find the version number. You may want to check the CoCoA
homepage for the latest version.

79

80 Chapter I1I-9.

I111-9.21 Conductor

Supported CoCoA Package

TITLE : conductor.cpkg
DESCRIPTION : CoCoA package for computing conductor sequence of points
AUTHOR : L.Bazzotti

LOADING INSTRUCTIONS
-- Enter
$contrib/conductor.Man() ;
to get a complete description of the package including a suggested alias.
-- Enter
$contrib/conductor.About () ;
to find the version number. You may want to check the CoCoA
homepage for the latest version.

I111-9.22 Matrix Normal Form
Supported CoCoA Package

TITLE : matrixnormalform.cpkg

DESCRIPTION : CoCoA package for computing normal forms of a matrix,
Smith Normal Form (PID)

AUTHOR : A.Bigatti, S.DeFrancisci

LOADING INSTRUCTIONS
-— Enter
$contrib/matrixnormalform.Man() ;
to get a complete description of the package including a suggested alias.
-- Enter
$contrib/matrixnormalform.About();
to find the version number. You may want to check the CoCoA
homepage for the latest version.

111-9.23 CantStop
Supported CoCoA Package

TITLE : CantStop.cpkg
DESCRIPTION : CoCoA package for playing Can’t Stop and studying strategies
AUTHOR : A.Bigatti

LOADING INSTRUCTIONS
-- Enter
$contrib/CantStop.Man() ;
to get a complete description of the package including a suggested alias.
-- Enter
$contrib/CantStop.About () ;
to find the version number. You may want to check the CoCoA
homepage for the latest version.

111-9.24 Control

Supported CoCoA Package

CoCoA Packages

I11-9.24. Control

TITLE : control.cpkg
DESCRIPTION : CoCoA package for Geometric Control Theory
AUTHOR : M. Anderlucci and M. Caboara

LOADING INSTRUCTIONS
-- Enter
$contrib/control.Man();
to get a complete description of the package including a suggested alias.
-- Enter
$contrib/control.About();
to find the version number. You may want to check the CoCoA
homepage for the latest version.

81

82

Chapter I1I-9. CoCoA Packages

Part IV

Doing Mathematics with CoCoA

83

Chapter IV-1

Booleans

IV-1.1 Introduction to Booleans

The two boolean constants are “TRUE” and “FALSE”. They are mainly used with the commands “If” (VI-9.7
pg.241) and “While” (VI-23.3 pg.358), etc., inside CoCoA programs. The relational operators

= <> < <= > >=
return boolean constants (see “Relational Operators” (III-3.3 pg.52)). The boolean operators are
Not And Or IsIn

and return boolean constants and are described below.

IV-1.2 Commands and Functions for Booleans

The following are commands and functions for booleans:

EgSet checks if the set of elements in two lists are equal
IsAntiSymmetric checks if a matrix is anti-symmetric

IsDefined check if an expression has been defined
IsDiagonal checks if a matrix is diagonal

IsEven, Is0dd test whether an integer is even or odd

IsHomog test whether given polynomials are homogeneous
IsIn check if one object is contained in another
IsLexSegment checks if an ideal is lex-segment

IsNumber checks if the argument is a number
IsPositiveGrading check if a matrix defines a positive grading
IsPPrime checks if an integer is a probable prime

IsPrime prime integer test

Isqrt (truncated) square root of an integer
IsServerReady checks if CoCoAServer is running

IsStable checks if an ideal is stable

IsStronglyStable checks if an ideal is strongly stable

IsSubset checks if the elements of one list are a subset of another
IsSymmetric checks if a matrix is symmetric

IsTerm checks if the argument is a term
IsTermOrdering check if a matrix defines a term-ordering

IsZero test whether an object is zero

Not, And, Or boolean operators

For details look up each item by name. Ounline, try “?ItemName” or “H.Syntax("ItemName")”.

85

86

Chapter IV-1. Booleans

Chapter IV-2

Numbers

IV-2.1 Introduction to Numbers

There are three types of numbers recognized by CoCoA: integers (type “INT”), rationals (type “RAT”), and
modular integers (type “ZMOD”). Numbers in CoCoA are handled with arbitrary precision. This means that the
sizes of numbers are only limited by the amount of available memory. The basic numeric operations—addition
(“+7), subtraction (“~”), multiplication (“*”), division (“/”), exponentiation (“~”), and negation (“~”)—behave
as one would expect. Be careful, two adjacent minus signs, “--", start a comment in CoCoA.

example

The last line in the above example does not return 3; it is interpreted as a comment.

IV-2.2 Rationals

Rational numbers can be entered as fractions or as terminating decimals. CoCoA always converts a rational
number into a fraction in lowest terms.
example

3/5;
3/5

IV-2.3 Numerators and Denominators for Rational Numbers

If F is a variable holding a fraction, then “F.Num” and “F.Den” are the numerator and denominator, respectively.
The functions “Num” and “Den”, respectively, return the same.
example

F := 3/5;
F.Num;
3

87

88 Chapter IV-2. Numbers

IV-2.4 Modular Integers

Let A and B be integers. The expression “A%B” has type “ZMOD” and represents the class of A modulo B. The
integer B should be greater than 0 and less then 32767 = 2% — 1.

When a modular integer is evaluated by CoCoA, it is reduced to a canonical form “A%B” with —B/2 < A <
B/2.

Two modular integers of the form “A%C” and “BYC” are said to be “compatible”, and the usual arithmetical
operations are applicable.

example

3%7;

25 + 445;

1%5

Type (3%11) ;

ZMOD

3%11 = 14}11;

TRUE

3%11 * 3;

-2 % 11

3%11 = 3; -- better and error than an unexpected answer!
ERROR: Cannot cast INT to ZMOD
CONTEXT: ZPMK(3, 11) = 3

Use the functions “Div” (VI-4.21 pg.192) and “Mod” (VI-13.17 pg.281) for quotients and remainders.

IV-2.5 Commands and Functions for Numbers

The following are commands and functions for numbers:
INTEGERS

IV-2.5. Commands and Functions for Numbers

Abs absolute value of a number

Bin binomial coefficient

BinExp binomial expansion

Den denominator

Div quotient for integers

EvalBinExp binomial expansion functions
EvalHilbertFn evaluate the Hilbert function

Fact factorial function

Fraction returns the quotient of its arguments
GCD greatest common divisor

GCDFreeBasis determine (minimal) GCD free basis of a set of integers
GenericPoints random projective points

ILogBase integer part of the logarithm
Inverse multiplicative inverse
Iroot integer part of r-th root of an integer
IsEven, IsOdd test whether an integer is even or odd
IsNumber checks if the argument is a number
IsPPrime checks if an integer is a probable prime
IsPrime prime integer test
Isqrt (truncated) square root of an integer
IsZero test whether an object is zero
LCM least common multiple
Len the length of an object
Max, Min a maximum or minimum element of a sequence or list
Mod remainder for integers
Mod2Rat reconstructing rationals from modular integers
NextPPrime find the next largest probable prime number
NextPrime find the next largest prime number
Num numerator
Partitions partitions of an integer
Product the product of the elements of a list
Rand random integer
Seed seed for “Rand”
Size the amount of memory used by an object
Sum the sum of the elements of a list
RATIONALS
Abs absolute value of a number
CFApprox continued fractions
CFApproximants continued fractions
ContFrac continued fractions denominators
DecimalStr convert rational number to decimal string
Den denominator
FloatApprox approx. of rational number of the form M x 10¥
FloatStr convert rational number to a float string
Fraction returns the quotient of its arguments
ILogBase integer part of the logarithm
Inverse multiplicative inverse
IsNumber checks if the argument is a number
IsZero test whether an object is zero
MantissaAndExponent convert rational number to a float
Max, Min a maximum or minimum element of a sequence or list
Num numerator
Product the product of the elements of a list
Sum the sum of the elements of a list

MODULAR INTEGERS

90

Fraction
Inverse
IsNumber
IsZero
Mod2Rat
Product
Sum

Chapter IV-2.

returns the quotient of its arguments
multiplicative inverse

checks if the argument is a number

test whether an object is zero

reconstructing rationals from modular integers
the product of the elements of a list

the sum of the elements of a list

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

Numbers

Chapter 1V-3

Strings

IV-3.1 Introduction to Strings

A string constant consists of a sequence of characters between double quotes (“" "”). For backward compati-
bility also single quotes (“’> *”) are allowed, but this syntax is now deprecated.

example

Print "This is a string.";
This is a string.

’So is this.’ -- deprecated
So is this.

One may not, however, start a string with a single quote and end with a double quote, or vice versa.

IV-3.2 Concatenation

Strings may be concatenated using “+” or using the list function “Concat” (VI-3.21 pg.178).

example
L := "hello ";
M := "world";
L+ MNM;

hello world

Concat(L,M);
hello world

IV-3.3 Substrings

If L is a string and N is an integer, then L[N] is the N-th character of L.

example
L := "hello world";
L[2];

The operator “IsIn” (VI-9.29 pg.252) can be used to test if one string is a substring of another.

91

92 Chapter IV-3. Strings

example

L := "hello world";
"hello" IsIn L;
TRUE

-- one may also write IsIn("hello",L)

IV-3.4 Quotes Within Strings

Strings are delimited using single quotes or double quotes (but not mixed). One may directly use quotes inside
a string if they are not of the same type as the delimiters. To get quotes inside a string which *are* of the same
type as the delimiters, the quotes must be doubled.

example
Print "This string ""contains"" quotes of ’various’ styles.";

This string "contains" quotes of ’various’ styles.

Print ’This string also "contains" quotes of ’’various’’ styles.’; --deprecated
This string also "contains" quotes of ’various’ styles.

Imagine the difficulties in writing this section of the online manual within a CoCoA package. ;>

IV-3.5 Commands and Functions for Strings

The following are commands and functions for strings:

Ascii convert between characters and ascii code
Comp the N-th component of a list

DecimalStr convert rational number to decimal string
FloatStr convert rational number to a float string
Format convert object to formatted string

GetEnv access shell variables

I0.SprintTrunc convert to a string and truncate

IsIn check if one object is contained in another
Latex LaTeX formatting

MantissaAndExponent
Max, Min

convert rational number to a float
a maximum or minimum element of a sequence or list

More print a string, N lines at a time

NewId create a new identifier

OpenIString open input string

OpenOString open output string

Spaces return a string of spaces

Sprint convert to a string

Var function calls by reference, other complex referencing

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

Chapter IV-4

Lists

IV-4.1 Introduction to Lists

A CoCoA list is a sequence of CoCoA objects between brackets. In particular, a list may contain other lists.
The empty list is “[1”. If L is a list and N is an integer, then L[N] is the N-th component of L. If L contains
sublists, then “L[N_1,N_2,...,N_s]” is shorthand for “LIN_1] [N_2]...[N_s]” (see the example below). Lists
are often used to build structured objects of type “MAT”, “VECTOR”, “IDEAL”, and “MODULE”

example
Use R ::= Q[t,x,y,z];
L := [34x+y~2,"a string",[], [TRUE,FALSE]]; -- a list
L[1]; -- the list’s 1st component
y©2 + 34x
L[2];
a string
L[3];
L]
L[4]; -- The 4th component is a list, itself;
[TRUE, FALSE]
L[4][1]; -- its 1st component;
TRUE
L[4,1]; -- the same.
TRUE
[1,"a"]+[2,"b"]; -- Note: one may add lists if their components are
[3, "ab"] -- compatible (see "Algebraic Operators").
L := [x"2-y,ty"2-z"3];
I := Ideal(L);
I;
Ideal(x"2 - y, ty"2 - z73)

IV-4.2 Commands and Functions for Lists
CoCoA provides a variety of commands for manipulating lists. Note in particular the command “In” (VI-9.10

pg.244) which is useful for building lists.
The following are commands and functions for lists:

93

Append

BBasisb

BlockMatrix

Bringln

CartesianProduct, CartesianProductList
Comp

Concat

ConcatLists

Count

Diff

Distrib

EqgSet

FGLM5

First

Flatten

GBM

GenericPoints

Head

HGBM

HIntersection

HIntersectionList
IdealAndSeparatorsOfPoints
IdealAndSeparators0OfProjectivePoints
IdealOfPoints

IdealOfProjectivePoints

In

Insert
Interpolate
Interreduce,
Intersection

Interreduced

IntersectionList
IsIn

IsSubset

Last

Len

List

MakeSet

Mat

MatConcatHor
MatConcatVer
Max, Min

Monic

NewList

NonZero
Permutations
PreprocessPtsb
Product

Remove

Reverse, Reversed
ScalarProduct
SeparatorsOfPoints
SeparatorsOfProjectivePoints
Size
SmoothFactor
Sort

SortBy

Sorted

SortedBy

Submat

Subsets

Sum

Syz

Tail

Toric
Toric.CheckInput

Ly o R,

Chapter IV-4.

append an object to an existing list

Border Basis of zero dimensional ideal

create a block matrix

bring in objects from another ring

Cartesian product of lists

the N-th component of a list

concatenate lists

concatenate a list of lists

count the objects in a list

returns the difference between two lists

the distribution of objects in a list

checks if the set of elements in two lists are equal
perform a FGLM Groebner Basis conversion
the first N elements of a list

flatten a list

intersection of ideals for zero-dimensional schemes
random projective points

the first element of a list

intersection of ideals for zero-dimensional schemes
intersection of ideals

intersection of ideals

ideal and separators for affine points

ideal and separators for points

ideal of a set of affine points

ideal of a set of projective points

create a list satisfying given conditions

insert an object in a list

interpolating polynomial

interreduce a list of polynomials or vectors
intersect lists, ideals, or modules

intersect lists, ideals, or modules

check if one object is contained in another
checks if the elements of one list are a subset of another
the last N elements of a list

the length of an object

convert an expression into a list

remove duplicates from a list

convert an expression into a matrix

create a simple block matrix

create a simple block matrix

a maximum or minimum element of a sequence or list
divide polynomials by their leading coefficients
create a new list

remove zeroes from a list

returns all permutations of the entries of a list
A representative subset of points

the product of the elements of a list

remove an object in a list

reverse a list

scalar product

separators for affine points

separators for projective points

the amount of memory used by an object

find small prime factors of an integer

sort a list

sort a list

sort a list

sort a list

submatrix

returns all sublists of a list

the sum of the elements of a list

syzygy modules

remove the first element of a list

saturate toric ideals

check input to “Toric”
NT waad

Lists

I1V-4.2. Commands and Functions for Lists

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

95

96

Chapter IV-4. Lists

Chapter IV-5

Records

IV-5.1 Introduction to Records

A record is a data type in CoCoA representing a list of bindings of the form “name —> object”.

example
Use R ::= Q[x,y,z];
P := Record[I = Ideal(x,y"2-z), F = x"2 + y, Misc = [1,3,4]];
P.I;

Ideal(x, y°2 - z)

P.Misc;

Record[Date = "1/1/98", F = x"2 + y, I = Ideal(x, y"2 - z), Misc = [1, 3, 4]]

P["I"]; -- equivalent to P.I
Ideal(x, y°2 - z)

P["Misc",3]; -- equivalent to P.Misc[3]

Each entry in a record is called a “field’. Note that records are “open” in the sense that their fields can be
extended, as shown in the previous example. At present, there is no function for deleting fields from a record,
one must rewrite the record, selecting the fields to retain:

example

P := Record[A =2, B=3, C=5,D=7];
Q := Record[];
Foreach F In Fields(P) Do

If F <> "C" Then Q.Var(F) := P.Var(F) EndIf; —- "Q.F" would not work here
EndForeach;
P :=Q;
Delete Q; -- get rid of the variable Q

97

98 Chapter IV-5.

P;
Record[A = 2, B =3, D = 7]

Records

IV-5.2 Commands and Functions for Records

The following are commands and functions for records:

Comp the N-th component of a list
DivAlg division algorithm

Fields list the fields of a record
IdealAndSeparators0fPoints ideal and separators for affine points
IdealAndSeparators0fProjectivePoints ideal and separators for points
Record create a record

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

Chapter I1V-6

Vectors

IV-6.1 Introduction to Vectors

An object of type VECTOR in CoCoA represents a vector of polynomials. If V is a vector and F is a polynomial,
then the following are also vectors:

+V, -V, F*V, VxF.

If V.and W are vectors with the same number of components, then one may add and subtract V and W
componentwise:

V+W, V-W.
example

Use R ::= Qlx,y];

V := Vector(x+1l,y,xy"2);

v;
Vector(x + 1, y, xy~2)

x*xV;

Vector(x~2 + x, xy, x"2y~2)
W := Vector(x,y,x 2y 2-y);
x*xV-W;

Vector(x"2, xy -y, y)

IV-6.2 Commands and Functions for Vectors

The following are commands and functions for vectors:

99

100

Bringln
Coeff0fTerm
Colon
ColumnVectors
Comp

Comps

Deg

DivAlg

E
FirstNonZero
FirstNonZeroPos
GenRepr
HColon

IsIn

IsTerm
IsZero

LC

Len

List

LM

LPos

LPP

LT

Mat
Monomials
NewVector

NF
NFsAreZero
NonZero

NR

NumComps
Product
ScalarProduct
Size

Sum

Support
Vector

Chapter IV-6.

bring in objects from another ring

coefficient of a term of a polynomial or vector
ideal or module quotient

the list of column vectors of a matrix

the N-th component of a list

list of components of a vector

the degree of a polynomial or vector

division algorithm

canonical vector

the first non-zero entry in a vector

the first non-zero entry in a vector
representation in terms of generators

ideal or module quotient

check if one object is contained in another
checks if the argument is a term

test whether an object is zero

the leading coeflicient of a polynomial or vector
the length of an object

convert an expression into a list

the leading monomial of a polynomial or vector
the position of the leading power-product in a vector
the leading power-product of a polynomial or vector
the leading term of an object

convert an expression into a matrix

the list of monomials of a polynomial or vector
create a new vector

normal form

test if normal forms are zero

remove zeroes from a list

normal reduction

the number of components of a vector

the product of the elements of a list

scalar product

the amount of memory used by an object

the sum of the elements of a list

the list of terms of a polynomial or vector
create a vector

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

Vectors

Chapter IV-7

Matrices

IV-7.1 Introduction to Matrices

An m x n matrix is represented in CoCoA by the list of its rows
Mat(R_1,...,R_m)

where each “R_1” is of type “LIST” and has length n. A matrix has type “MAT”. The (A,B)-th entry of a matrix
M is given by “M[A][B]” or “M[A,B]”.

example
Use R ::= Q[x,y,z];
M := Mat([[x,y,xy 2], [y,z"2,2+x]11);
M;
Mat ([

[x, vy, xy~21,
[y, z72, x + 2]

The following operations are defined as one would expect for matrices
M~A, +M, -N, M+N, M-N, Mx*N, F*xM, Mx*F

where M,N are matrices, A is a non-negative integer, and F is a polynomial or rational function, with the
obvious restrictions on the dimensions of the matrices involved.

example

Use R ::= Q[x,y];
N := Mat([[1,2],[3,4]11);
N~2;
Mat ([

[7, 10],

[15, 22]
D
x/y * N;
Mat ([

[x/y, 2x/y],

[3x/y, 4x/y]

101

102

N + Mat([[x,x],[y,y11);
Mat ([

[x +1, x + 2],

[y + 3,y + 4]

Chapter IV-7. Matrices

IV-7.2 Commands and Functions for Matrices

The following are commands and functions for matrices:

Adjoint
BlockMatrix
BringlIn
ColumnVectors
DegLexMat
DegRevLexMat
Det

DiagonalMat
HilbertBasis
Identity
Inverse
IsAntiSymmetric
IsDiagonal
IsPositiveGrading
IsSymmetric
IsTermOrdering
IsZero

Jacobian

Len

LexMat

LinKer

LinSol

List

Mat
MatConcatHor
MatConcatVer
Minors

NewMat
Pfaffian
PositiveGrading4
Product
RevLexMat

Size

Submat

Sum

TensorMat

Toric
Toric.CheckInput
Transposed
XelMat

adjoint matrix

create a block matrix

bring in objects from another ring

the list of column vectors of a matrix
matrices for std. term-orderings

matrices for std. term-orderings

the determinant of a matrix

matrix with given diagonal

Hilbert basis for a monoid

the identity matrix

multiplicative inverse

checks if a matrix is anti-symmetric
checks if a matrix is diagonal

check if a matrix defines a positive grading
checks if a matrix is symmetric

check if a matrix defines a term-ordering
test whether an object is zero

the Jacobian of a list of polynomials

the length of an object

matrices for std. term-orderings

find the kernel of a matrix

find a solution to a linear system

convert an expression into a list

convert an expression into a matrix
create a simple block matrix

create a simple block matrix

list of minor determinants of a matrix
create a new matrix

the Pfaffian of a skew-symmetric matrix
extend a positive grading (for CoCoA-4 multigradings limitation)
the product of the elements of a list
matrices for std. term-orderings

the amount of memory used by an object
submatrix

the sum of the elements of a list

returns the tensor product of two matrices
saturate toric ideals

check input to “Toric”

the transposition of a matrix

matrices for std. term-orderings

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

Chapter IV-8

Rings

IV-8.1 Introduction to Rings

Polynomial rings play a central role in CoCoA. Indeed, every object in CoCoA is defined over a base ring which
is a polynomial ring. The user can define many rings, but at any time a “current ring’ is active within the
system. Most commands use the current ring as the base ring.

Once a ring has been defined, the system can handle the following mathematical objects defined over that
ring:

numbers (integers, rationals, modular integers);
polynomials;

vectors of polynomials;

rational functions;

ideals;

modules (submodules of a free module);

lists of objects;

matrices of objects.

¥ ¥ X X X X % %

Variables containing ring-dependent objects such as polynomials, ideals, and modules are “labeled” by their
ring. Variables containing objects such as integers which are not dependent on a particular ring are not labeled.
IMPORTANT NOTE: Starting with CoCoA 3.5, variables are no longer local to specific rings, i.e., all
variables are accessible from all rings.
The next sections explains how to create a ring.

IV-8.2 New Rings

CoCoA starts with the default ring R = Q[t,x,y,z]. The command for building a new ring is:
I

C[X:INDETS]
or

I

C[X:INDETS], M_1, ... , M.n

where I is the identifier of a CoCoAL variable, C: RING is an expression defining a coefficient ring (Z, Q
or Z/(N)), X is an expression that defines the indeterminates, and the “M_i” are “modifiers’. Each of these
components is discussed in separate sections, below.

The modifiers are used to modify the default settings of the base ring. The modifiers are of three classes:
term-orderings, weights, term orderings for modules. These classes are discussed in separate sections below. It
is possible to have no modifiers. The default values are: DegRevLex for the term-ordering, 1 for the weight of
each indeterminate, and ToPos for the module term-ordering.

After the ring is defined using the above syntax, it can be made to be the current ring with the command
“Use” (VI-21.4 pg.352) or it can be accessed temporarily from within the current ring with the command
“Using” (VI-21.5 pg.353). See these two commands for more information. There are also several examples of
ring-building in the tutorial.

103

104 Chapter IV-8. Rings

example
Use R ::= Qlx,y,z]; -- define and use the ring R
S ::=Z/(103) [x,y], Lex; -- define the ring S with Lex term-ordering
CurrentRing(); -- the current ring is still R
Qlx,y,z]
Use S; -- now the ring S is the current ring
Z/(103) [x,y]
Using R Do X := z"2-3 EndUsing; -- define a variable in R (not the current
-- ring)
Y := R::x"2+y"2+z"2; -- another way of defining a variable in R while
-- S is the current ring
T ::= Q[x[1..4],y[1..5,1..5]], Elim(y[1..5,1]), ToPos; -- a more
-- complicated ring

IV-8.3 Coefficient Rings

As mentioned above, the coefficient ring for a CoCoA polynomial ring may be:

1. Z: (arbitrarily large) integer numbers;
2. Q: (arbitrarily large) rational numbers;
3. Z/(N): (see ‘‘\verb&CocoaLimits&’’ (\ref{Cocoalimits} pg.\pageref{Cocoalimits})) integers modulo N,

The first two types of coefficients are based on the GNU-gmp library. When integers modulo N are used, the
system checks whether N is a prime number and, if it is not, a warning message is given. However non-prime
integers are accepted. Hence it is possible to do some work with polynomials whose coefficients are not in a
field, but it is up to the user to ensure that no illegal operation will be attempted. To find the upper limit for
the characteristic in the third case, see the field “MaxChar” returned by the function “Cocoalimits” (VI-3.13
pg.174); N < 32767 is typical. (Note: 32003 is prime)

IMPORTANT NOTE: Presently the implementation of the Buchberger algorithm for computing Groebner
bases operates correctly only if polynomials have coefficients in a field. So the high level operations on ideals
and modules (and the polynomial GCD) involving Groebner bases computations work only if polynomials have
coefficients in a field. Otherwise it is very likely that the user will run into trouble.

“CoeffRing”: When creating a new ring, the word “CoeffRing” may be used to refer to the current
coefficient ring. Examples below illustrate its use.

example
Use R ::= Q[x,y]; -- coefficient ring is Q
S ::=2Z/(5)[t]; -- coefficient ring is the field with 5 elements
T ::= Z[u,v]; -- A warning is issued if the coefficient ring

-- is not a field.
-— WARNING: Coeffs are not in a field
-- GBasis-related computations could fail to terminate or be wrong
Use R ::= Z/(2) [x,y,z]; CurrentRing(); -- these examples show the usage
-- of "CoeffRing"

Use S ::= CoeffRingla,b]; CurrentRing();
Z/(2) [a,b]

IV-8.4 Indeterminates

An “indeterminate” is represented by a name consisting of either a single lower case letter or a lower case letter

»” [43

followed by one or more indices. For example, “x”, “x[1]”, “x[1,2,3]” are legal (and different) indeterminates,

I1V-8.5. Weights Modifier 105

as is “x[2I,2I+1]” if I is an integer variable.
When creating a ring the indeterminates are listed, optionally separated by commas: lack of separating
commas is now deprecated and might be unacceptable in future versions. Indeterminates with indices are

formed with the syntax: “x[R_1,...,R_nl”, where “x” stands for any lower case letter and each “R_i” has the
form “A..B” for integers “A <= B”.

example
Use R ::= Q[xyz]l; -- this syntax is deprecated
Use R ::= Q[x,y,z];
Use R ::= Q[x[1..2,4..8],y[1..3],u,v];
Indets();

[x[1,4], xI[1,5], x[1,6], x[1,7], x[1,8], x[2,4], x[2,5], x[2,6],
x[2,7]1, x[2,8], y[1], y[2], y[3], u, v]

IV-8.5 Weights Modifier

In forming a ring, one of the possible modifiers that may be added has one of the forms:

(i) “Weights(W_1,...,W_n)” where “W_i” is a positive integer specifying the weight of the i-th indeterminate
(the number of weights listed must be equal to the number of indeterminates)

(ii) “Weights(M)” where M is a matrix with as many columns as there are indeterminates. In the latter
case, the i-th indeterminate has the multi-degree given by the i-th column of M.

NB: Because of a choice in the early design (oriented to single gradings), the first row of the matrix M *must*
have all positive entries. CoCoA-5, with a cleaner mathematical foundation, will not have this limitation.

If the weights are not specified the default value is 1 for all indeterminates.
example

Use S ::= Qla,b,c], Weights(1,2,3);
Deg(b) ;

L := [1;2’3]:

W := Mat([[1,2,3],[4,5,6]11);
Use S ::= Qla,b,c], Weights(W);

MDeg(b); -- the multi-degree of Db
[2, 5]

MDeg(b~3+a"2c);
[6, 15]
WeightsMatrix () ;
Mat ([

[1, 2, 31,

[4, 5, 6]

WeightsList(); -- returns the first row of the Weights Matrix

106 Chapter IV-8. Rings

IV-8.6 Orderings

Polynomials are always sorted with respect to the ordering of their base ring. All the operations involving
polynomials utilize and preserve this ordering. The user can define custom orderings or choose a predefined
term-ordering. Some commands temporarily change the term-ordering in order to make a computation. The
various possibilities are discussed more fully, below.

The command “0Ord” (VI-15.8 pg.302) can be used both as a modifier to set the ordering of the ring and as
a way to view the matrix defining the current term-ordering.

example

Use R ::= Q[x,y,z], Lex; -- lexicographic term-ordering (predefined)
Use S ::= Qlu,v], 0rd([[1,1],[2,-3]1]1); -- custom term-ordering
0rd(R); -- the matrix defining the term-ordering for R
Mat ([

(1, 0, 0],

[0, 1, 0],

[0, 0, 1]
D
0rd(S); -- the matrix defining the term-ordering for S
Mat ([

[1, 11,

[2, -3]
D

IV-8.7 Predefined Term-Orderings

The predefined term-orderings are:

* degree reverse lexicographic: “DegRevLex” (the default ordering)

* degree lexicographic: “Deglex”

* pure lexicographic: “Lex”

* pure xel: “Xel”

* elimination term-ordering: “Elim(X:INDETS)”

The first two term-orderings use the weights of the indeterminates for computing the degree of a monomial.
If the indeterminates are given in the order “x_1, ..., x_n”, then “x_1 > ... > x_n” with respect to Lex,
but “x_1 < ... < x_n” with respect to Xel.

In the last ordering, X specifies the variables that are to be eliminated. It may be a single indeterminate or a
range of indeterminates. However, X may not be an arbitrary list of indeterminates; for that, see the command
“Elim” (VI-5.2 pg.195) (as opposed to the modifier “Elim” (VI-5.2 pg.195) being discussed here). A range of
indeterminates can be specified using the syntax “< first-indet >..< last-indet >”. Another shortcut: if
there are indexed variables of the form, say, “x[i,j]”, then “Elim(x)” specifies a term-ordering for eliminating
all of the “x[i,j]1”.
example

Use R ::
x+y+z;
X+y+z

Qlx,y,zl, Lex;

Use R ::= Q[t,x,y,z], Elim(t);

I1V-8.8. Temporary Term-Orderings 107

I := Ideal(t-x,t-y"2,t"2-x273);
GBasis(I);
[t - x, -y"2 + x, x273 - x72]

Use R ::= Q[x[1..5],y,2z], Elim(x); -- term-ordering for eliminating all
-- of the x[i,jl’s
0rdQ);
Mat ([
(1, 1, 1, 1, 1, 0, 0],
[o, o, 0, 0, 0, 1, 11,
(o, o, o, o, o, o, -11,
(o, o, o, o, -1, 0, 0],
(o, o, o, -1, o, o0, 07,
(o, o, -1, o, o0, o0, 01,
[0, -1, o, 0, 0, 0, 0]
D

IV-8.8 Temporary Term-Orderings

For computations which temporarily require a different term-ordering (for example, to eliminate variables or to
homogenize ideals), the system automatically changes the term-ordering to a more suitable one, performs the
computation, and then restores the initial term-ordering and gives its output with respect to this one. In this
way the user never has to deal with temporary changes.

example

Use R ::= Q[t,x,y,z];

I := Ideal(t-x,y-2,t-2);
Elim(y,I);

Ideal(t - z, -x + 2z)

IV-8.9 Custom Term-Orderings

For special purposes, the user can enter a custom ordering. We recall that each ordering “>” on the set of the
terms of a polynomial ring in n variables corresponds to a (not uniquely determined) array “(u_1,...,u_s)”
of vectors of the real vector space R™. More precisely if a = (ay,...,a,) and b = (b1, ..., b,) are the n-tuples of
the exponents of two terms t and t’, then

t >t <=> (auy,...,a.us) >ex (b, ..., bus)

where >j., is the ordering on R® given by: (c1,...,¢5) >iex(dy,...,ds) if and only if the first (leftmost)
non-zero coordinate of (¢; — dy, ..., cs — ds) is positive.

CoCoA accepts orderings defined by means of n x n matrices of integers. This is not a real restriction if one
is interested, for instance, in finding all possible Groebner bases of a given ideal.

Moreover > is a term-ordering if and only if the matrix whose rows are the vectors (uy, ..., us) has maximal
rank and is such that the first non-zero element in each column is positive.

To compute a Groebner basis a term-ordering is needed.

example
-- The following CoCoA command defines S to be a polynomial ring and
—-- orders the terms of S using the term-ordering corresponding to the
-- vectors (1,1,0,0),(0,-1,0,0),(0,0,1,1),(0,0,0,-1):
Use S ::= Qlx,y,z,t], Ord(Mat([[1, 1, O, O],

(0,-1, 0, 01,

(o, o, 1, 11,

[0, 0, 0,-111));

108 Chapter IV-8. Rings

IV-8.10 Module Orderings

First we recall the definition of a module term-ordering. We assume that all our free modules have finite rank
and are of the type M = R" where R is a polynomial ring with n indeterminates. Let [e;|i = 1,...,7] be the
canonical basis of M. A “term” of M is an element of the form Te; where T belongs to the set T(R) of the
terms of R. Hence the set T(M), of the terms of M, is in one-to-one correspondence with the Cartesian product,
T(R) x [1,...,7].

A “module term-ordering’ is defined as a total ordering > on T(M) such that for all “T, T_1, T_2” in T(R),
with T not equal to 1, and for all i, j in 1,...,r,

(1) T*T_1+*ei>T_1*e.i
(2) T1*xei>T2*ej => T*T.1*xedi>TH+T.2%* e_j

Each term-ordering on the current ring induces several term-orderings on a free module. CoCoA allows the user
to choose between the following:
* the ordering called “ToPos” (which is the default one) defined by:

T_1 *xe_i>T_2*e_j<=> T_1>T_.2in R
or, if T_1 =T.2 , i< j

* the ordering called “PosTo” defined by:

T1%edi>T.2%ej<=>1ic< j
or, if i = j, T_1 > T2 in R .

The leading term of the vector (z,y?) with respect to two different module term-orderings:

example

Use R ::= Q[x,y], ToPos;
LT (Vector(x,y"2));
Vector (0, y~2)

Use R ::= Q[x,y], PosTo;
LT (Vector(x,y~2));
Vector(x, 0)

IV-8.11 Accessing Other Rings

There are a variety of ways of interacting with a ring outside of the current ring. First of all, unlike CoCoA
3.4, starting with CoCoA 3.5, variables are usually assigned to a “working memory” accessible from all rings.
(The only exceptions are variables prefixed by “MEMORY”. See the chapter entitled “Memory Management” (III-8
pg.67) for further information.) If a variable contains an object which does not depend on a user-defined ring—
for example an integer—that object can be immediately accessed and used within any ring. If a variable contains
a ring-dependent object such as a polynomial, an ideal, or a module, the variable becomes labeled by the ring in
which it was defined. Built-in CoCoA functions should be smart enough to take into account the rings on which
their arguments depend (if you find an exception, please send a message to “cocoa at dima.unige.it”).

To access rings outside of the current ring, one may of course use the command “Use” (VI-21.4 pg.352) to
change the current ring. Some other ways of interacting with outside rings:

(1) The “::” construction. This construction can be used to define variables or perform operations in rings
outside of the current ring.

example
Use R ::= Q[x,y,z];
I := Ideal(x,y,z)"3;
I;

Ideal(x"3, x"2y, x"2z, xy~2, xyz, x2°2, y°3, y 2z, yz°2, z73)
Use S ::= Z/(5)[a,b];
I; -- 1 is labeled by its ring, R

IV-8.12. Ring Mappings: the Image Function 109

R :: Ideal(x"3, x"2y, x"2z, xy~2, xyz, x2°2, y°3, y 2z, yz~2, z°3)

RingEnv(I); -- the name of the ring on which I is dependent

R

R:: Poincare(R/I); -- To be sure, one may prefix any operation
-—on I by "R::" although this should not

-- be necessary
(1 + 3a + 6a"2)
R:: (x+y)~"2; -- S is still the active ring, but we can perform
—-- operations in R

R :: x72 + 2xy + y™2

J :=R :: Ideal(x"2-y); -- while S is active, one may define an
-- object dependent on R. This variable
-- becomes part of the working memory.

Use R;
J; -—- the label is not used if R is active
Ideal(x"2 - y)

(2) “Using” (VI-21.5 pg.353). From within the current ring one may temporarily perform commands in
an another ring using the command “Using” (VI-21.5 pg.353). A brief example appears below. For more
information, see the online help entry for “Using” (VI-21.5 pg.353).

example
Use R ::= Qlx,y];
S ::= Z/(5)[a,b]; -- the current ring is still R
Using S Do
X := (atb)"5; -- assign a value to a variable in another ring
EndUsing;
X

S :: a’5 +b’b

(3) “Image” (VI-9.9 pg.242). To map objects from one ring to another, one may use the command “Image”
(VI-9.9 pg.242). An introduction to this command appears in the following section and more details can be
found in the online help entry, “Image” (VI-9.9 pg.242).

(4) “Qzp”, “ZPQ”. The commands “QZP” and “ZPQ” can sometimes be used to quickly map a polynomial
or ideal from an outside ring into the current ring. See the online help entry, “QZP” (VI-17.3 pg.314), “ZPQ”
(VI-25.1 pg.363), for details.

(5) “BringIn” (VI-2.9 pg.167). This is the easiest function, but may be slow, to map objects from one ring
to another.

IV-8.12 Ring Mappings: the Image Function

The function “Image” (VI-9.9 pg.242) implements a ring homomorphism. Suppose S is the current ring and
R is another ring. If X is an object in R, the function “Image” (VI-9.9 pg.242) may be used to substitute

110 Chapter IV-8. Rings

polynomials in S for the indeterminates in X. An example is given below and complete details are given in the
online help entry for “Image” (VI-9.9 pg.242).

To make substitutions within a single ring, one would usually use “Eval” (VI-5.7 pg.197) or “Subst” (VI-
19.23 pg.340) rather than “Image” (VI-9.9 pg.242). To map a polynomial or ideal from an outside ring into the
current ring, the functions “QZP” and “ZPQ” are sometimes useful. To map a polynomial or rational function
(or a list, matrix, or vector of these) from R to S without changing indeterminates, use the function “BringIn”
(VI-2.9 pg.167). (“BringIn” is only applicable if the indeterminates of the object to be mapped are a subset of
those in S.)

example
Use R ::= Qla,b,c];
X := atb-3c;
Use S ::= Q[x,y];
F := RMap(x~2,2,y"2); -- syntax for defining a map: the n-th

-- indeterminate in the domain will be mapped to
-- the n-th element listed in RMap.

X; —— X lives in the ring R

R::a+b- 3c

Image(X,F); -- the image of E under the map F

x"2 - 3y"2 + 2

Image(R:: (at+b)"2,F);

x4 + 4x72 + 4

IV-8.13 Quotient Rings

If “R” is a ring identifier and I is an ideal defined in “R”, then “R/I” represents the corresponding quotient ring.
It has type “TAGGED("Quotient")”.

example
Use R ::= Qlx,y];
I := Ideal(y-x"2);
Q := R/I;
Hilbert(Q); -- the Hilbert function for Q
H(0) =1
H(x) = 2 for x >=

IV-8.14 Commands and Functions for Rings

The following are commands and functions controlling rings:

AffHilbert
AffHilbertFn
AffHilbertSeries
AffPoincare
Characteristic
Clear
CurrentRing

Deg

Delete

Destroy

Dim

Hilbert
HilbertFn
HilbertPoly
HilbertSeries
HilbertSeriesMultiDeg
HilbertSeriesShifts
HVector

Image

Indet

IndetInd
IndetIndex
IndetName

Indets

MDeg
Multiplicity
NumIndets

Ord

Poincare
PoincareMultiDeg
PoincareShifts
QZP

Ring

RingEnv

RingEnvs
RingEnvSet

RMap
TypeOfCoeffs
UnivariateIndetIndex
Use

Using
WeightsList
WeightsMatrix
ZPQ

IV-8.14. Commands and Functions for Rings

the affine Hilbert function

the affine Hilbert function

the affine Hilbert-Poincare series

the affine Hilbert-Poincare series

the characteristic of a ring

clear the working memory or a ring-bound memory
the current ring

the degree of a polynomial or vector

delete variables from the working memory
delete rings

the dimension of a ring or quotient object

the Hilbert-Poincare’ function

the Hilbert function

the Hilbert polynomial

the Hilbert-Poincare series

the Hilbert-Poincare series wrt a multigrading
the Hilbert-Poincare series

the h-vector of a module or quotient object
apply ring homomorphism

individual indeterminates

the index of an indeterminate

index of an indeterminate

the name of an indeterminate

list of current indeterminates
multi-degree of an polynomial

the multiplicity (degree) of a ring or quotient object
number of indeterminates

matrix defining a term-ordering

the Hilbert-Poincare series

the Hilbert-Poincare series wrt a multigrading
the Hilbert-Poincare series

change field for polynomials and ideals
returns the ring with a given name

name of the current ring

names of all defined rings

set of names of the ring environments

define ring homomorphism

type of the coefficients of the current ring

the index of the indeterminate of a univariate polynomial
command for making a ring active

perform commands in non-active ring

first row of the weights matrix

matrix of generalized weights for indeterminates
change field for polynomials and ideals

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

111

112 Chapter IV-8. Rings

Chapter I1V-9

Polynomaials

IV-9.1 Introduction to Polynomials

An object of type POLY in CoCoA represents a polynomial. To fix terminology: a polynomial is a sum of
terms; each term is the product of a coefficient and power-product, a power-product being a product of powers
of indeterminates. (In English it is standard to use “monomial’ to mean a power-product, however, in other
languages, such as Italian, monomial connotes a power product multiplied by a scalar. In the interest of world
peace, we will use the term power-product in those cases where confusion may arise.)

example

The following are CoCoA polynomials:

Use R ::= Q[x,y,z];

F := 3xyz + xy°2;

F;

xXy~2 + 3xyz

Use R ::= Q[x[1..5]];

Sum([x[N]"2 | N In 1..5]);
x[1]7°2 + x[2]"2 + x[3]"2 + x[4]"2 + x[5]"2

CoCoA always keeps polynomials ordered with respect to the term-orderings of their corresponding rings.
The following algebraic operations on polynomials are supported:

F°N, +F, -F, FxG, F/G if G divides F, F+G, F-G,

where F, G are polynomials and N is an integer. The result may be a rational function.
example

Use R ::= Qlx,y,z];
F := x"2+xy;
G := x;

F/(x+z);

(x"2 + xy)/(x + 2)
F~2;

x"4 + 2x73y + x72y"2
F~(-1);

1/(x"2 + xy)

113

114

IV-9.2 Evaluation of Polynomials

Chapter IV-9. Polynomials

Polynomials may be evaluated using the function “Subst” (VI-19.23 pg.340). More generally, “Subst” (VI-19.23
pg.340) allows one to substitute polynomials from the current ring for the indeterminates of a given polynomial.
If substitutions are to be made for each indeterminate, in order, it is easier to use “Eval” (VI-5.7 pg.197). For

more general substitutions, see “Image” (VI-9.9 pg.242).

example
Use R ::= Q[x,y,z];
F = x+ty+z;
Eval(F,[2,1]); -- let x=2 and y=1 in F
z + 3
Subst(F, [[x,2],[y,1]1]1); -- the same thing using °‘\verb&Subst&’’
z + 3
Subst(F,y,1); -- the syntax is easier when substituting for a single
-- indeterminate
x+z+1
Subst(F, [[y,x-y],[z,2]]1); -- substitute x-y for y and 2 for z
2x -y + 2

IV-9.3 Commands and Functions for Polynomials

The following are commands and functions for polynomials:

Bin
BringlIn
Coefficients
Coeff0fTerm
Colon

Deg

Den
DensePoly
Der
Discriminant
DivAlg

Eval

Factor
Fraction
GCD

GenRepr
HColon
Homogenized
Interpolate
Inverse
IsHomog
IsIn

IsTerm
IsZero
Jacobian

LC

LCM

Len

LM

Log
LogToTerm
LPP

LT

MapDown
MDeg

Monic
Monomials
NF
NFsAreZero
NR

Num

Poly
Product

QZP
Randomize
Randomized
RealRootRefine
RealRoots
Resultant
RootBound
Size
StarPrint
Subst

Sum

Support
Sylvester

UnivariateIndetIndex

WLog
ZPQ

I1V-9.3. Commands and Functions for Polynomials 115

binomial coefficient

bring in objects from another ring

list of coefficients of a polynomial or vector
coefficient of a term of a polynomial or vector
ideal or module quotient

the degree of a polynomial or vector

denominator

the sum of all power-products of a given degree
the derivative of a rational function

the discriminant of a polynomial

division algorithm

substitute numbers or polynomials for indeterminates
factor a polynomial

returns the quotient of its arguments

greatest common divisor

representation in terms of generators

ideal or module quotient

homogenize with respect to an indeterminate
interpolating polynomial

multiplicative inverse

test whether given polynomials are homogeneous
check if one object is contained in another
checks if the argument is a term

test whether an object is zero

the Jacobian of a list of polynomials

the leading coefficient of a polynomial or vector
least common multiple

the length of an object

the leading monomial of a polynomial or vector
the list of exponents of the leading term of a polynomial
returns a monomial (power-product) with given exponents
the leading power-product of a polynomial or vector
the leading term of an object

convert a constant polynomial to a number
multi-degree of an polynomial

divide polynomials by their leading coefficients
the list of monomials of a polynomial or vector
normal form

test if normal forms are zero

normal reduction

numerator

convert an expression into a polynomial

the product of the elements of a list

change field for polynomials and ideals

randomize the coefficients of a given polynomial
randomize the coeflicients of a given polynomial
refine a root of a univariate polynomial over Q
computes a root of a univariate polynomial over Q
the resultant of two polynomials

bound on roots of a polynomial over Q

the amount of memory used by an object

print polynomial with *’s for multiplications
substitute values for indeterminates

the sum of the elements of a list

the list of terms of a polynomial or vector

the Sylvester matrix of two polynomials

the index of the indeterminate of a univariate polynomial
weighted list of exponents

change field for polynomials and ideals

116 Chapter IV-9. Polynomials

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

Chapter 1V-10

Rational Functions

IV-10.1 Introduction to Rational Functions

An object of type RATFUN in CoCoA represents a rational function, i.e., a quotient of polynomials. Each
rational function is represented as P/Q where P and Q are polynomials (of type POLY) and deg(Q) > 0.
Common factors of the numerator and denominator are automatically simplified. At present, rational functions
in CoCoA are only available over a field.

example
Use R ::= Q[x,y];
F := x/(x+y); -- a rational function
Fx(x+y);
X
(x72-y~2)/(x+y); -- the result here is a polynomial
X-y

The following algebraic operations on rational functions are supported:
F°N, +F, -F, FxG, F/G, F+G, F-G,

where F, G are rational functions and N is an integer.
For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

IV-10.2 Numerators and Denominators for Rational Functions

If F is a variable holding a rational function, then F.Num and F.Den are the numerator and denominator,
respectively. The functions “Num” (VI-14.12 pg.292) and “Den” (VI-4.9 pg.186), respectively, return the same.

example
F = x/(x+y);
F.Num;

117

118 Chapter IV-10. Rational Functions

IV-10.3 Commands and Functions for Rational Functions
The following are commands and functions for rational functions:

BringIn bring in objects from another ring
Den denominator

Der the derivative of a rational function
Fraction returns the quotient of its arguments
Inverse multiplicative inverse

IsZero test whether an object is zero

Len the length of an object

Num numerator

Product the product of the elements of a list
Size the amount of memory used by an object
Subst substitute values for indeterminates

Sum the sum of the elements of a list

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

Chapter IV-11

Ideals

IV-11.1 Introduction to Ideals

An object of type IDEAL in CoCoA represents an ideal. An ideal is formed using the command
“Ideal(P_1,...,P_n)” where the “P_i” are generators for the ideal.

example

Use R ::= Q[x,y];
I := Ideal(x,y"2,2+xy"2);

The following algebraic operations yield ideals:

I°N, I+J, ExF, P:Q

where: I and J are ideals; N is a non-negative integer; E,F are either both ideals or one is an ideal and the other
is a polynomial; and the pair (P,Q) has the form (IDEAL,POLY), (IDEAL,IDEAL), (MODULE,VECTOR),
(MODULE,MODULE).

example
Use R ::= Qlx,y];
I := Ideal(x,y"2,2+xy"2);
172;

Ideal(x"2, xy~2, x"2y"2 + 2x, y"4, xy~4 + 2y72, x"2y"4 + 4xy~2 + 4)
J := Ideal(y);

I+J;

Ideal(x, y~2, xy~2 + 2, y)

I%J;

Ideal(xy, y~3, xy~3 + 2y)

IV-11.2 Commands and Functions for Ideals

The following are commands and functions for ideals:

119

120

BBasisb
BettiDiagram
BettiMatrix

Colon

Depth

Elim

EquiIsoDec

Ext

FGLM5
GB.GetBettiMatrix
GB.GetNthSyz
GB.GetNthSyzShifts
GB.GetRes
GB.GetResLen
GB.ResReport
GBasis

GBasisb, and more
GBasisTimeout

GBM

GenRepr

Gens

Gin, Ginb

HColon

HGBM
HIntersection
HIntersectionList
Homogenized
HSaturation

Ideal

IdealAndSeparatorsOfPoints
IdealAndSeparatorsOfProjectivePoints

IdealOfPoints

IdealOfProjectivePoints
Interreduce, Interreduced

Intersection
IntersectionlList
IsIn
IsLexSegment
IsStable
IsStronglyStable
IsZero

Len

LT

Max, Min
MinGens
Minimalize
Minimalized
MinSyzMinGens
MonsInIdeal

NF

NFsAreZero
PrimaryDecomposition
Product
QuotientBasis
QZP

Radical
RadicalOfUnmixed
ReducedGBasis
Res

Saturation

Size

Sum

Syz

SyzMinGens
Syz0fGens

Chapter IV-11.

Border Basis of zero dimensional ideal

the diagram of the graded Betti numbers

the matrix of the graded Betti numbers

ideal or module quotient

Depth of a module

eliminate variables

equidimensional isoradical decomposition

presentation Ext modules as quotients of free modules
perform a FGLM Groebner Basis conversion

returns the Betti matrix computed so far

Ideals

returns the part of the Nth syzygy module computed so far

shifts of the Nth syzygy module computed so far
returns the resolution computed so far

returns the length of the resolution computed so far
status of an interactive resolution calculation
calculate a Groebner basis

calculations using the CoCoAServer

compute a Groebner basis with a timeout
intersection of ideals for zero-dimensional schemes
representation in terms of generators

list of generators of an ideal

generic initial ideal

ideal or module quotient

intersection of ideals for zero-dimensional schemes
intersection of ideals

intersection of ideals

homogenize with respect to an indeterminate
saturation of ideals

convert an expression into an ideal

ideal and separators for affine points

ideal and separators for points

ideal of a set of affine points

ideal of a set of projective points

interreduce a list of polynomials or vectors
intersect lists, ideals, or modules

intersect lists, ideals, or modules

check if one object is contained in another

checks if an ideal is lex-segment

checks if an ideal is stable

checks if an ideal is strongly stable

test whether an object is zero

the length of an object

the leading term of an object

a maximum or minimum element of a sequence or list
list minimal generators

remove redundant generators

remove redundant generators

minimal generators of syzygies of minimal generators
ideal generated by the monomials in an ideal
normal form

test if normal forms are zero

primary decomposition of an ideal

the product of the elements of a list

vector space basis for zero-dimensional quotient rings
change field for polynomials and ideals

radical of an ideal

radical of an unmixed ideal

compute reduced Groebner basis

free resolution

saturation of ideals

the amount of memory used by an object

the sum of the elements of a list

syzygy modules

syzygy module for a set of minimal generators
syzygy module for a given set of generators

P TR B . A [[

IV-11.2. Commands and Functions for Ideals 121

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

122 Chapter IV-11. Ideals

Chapter 1V-12

Modules

IV-12.1 Introduction to Modules

An object of type MODULE in CoCoA represents a submodule of a free module. A module is represented by
its generators as:

Module(V_1,...,V_n)

Each “V_i” has the form “[P_1,...P_r]” or “Vector(P_1,...P_r)”, where r is the rank of the free module
containing the given module and each “P_j” is of type POLY.
As with ideals, information about a module can be accessed using the same syntax as for records.

CoCoA supports quotient modules and modules, as described in the next section. Shifts have been disabled
in CoCoA 4.

example
Use S ::= Qlx,y];
M := Module([x,y"2,2+x"2y], [x,0,y]1); -- define the submodule of S°3
-- generated by (x,y"2,2+x"2y) and (x,0,y)
GBasis(M);

[Vector(x, 0, y), Vector(x, y~2, x"2y + 2)]

Describe M;

Record[Type = MODULE, Value = Record[Gens = [[x, y°2, x"2y + 2], [x,
0, yll, MRC = 1, GBasis = [[x, 0, y], [x, y°2, x"2y + 2]]1]]
M.GBasis;

[Vector(x, 0, y), Vector(x, y~2, x"2y + 2)]

M.Gens[1];

Vector(x, y~2, x"2y + 2)

M.NumComps; -- M is a submodule of a free module of rank 3

IV-12.2 Quotient Modules

If M is a CoCoA module which is a submodule of the free module R* for some ring R, then R¥/M represents
a quotient module. It has type TAGGED(” Quotient”).

example
Use R ::= Qlx,y];
M := Module([x-y,x"2-y"2,x"3+xy"2], [y,x"2,x"2y]);
Q := R"3/M;

123

124

IV-12.3 Shifts

THIS FACILITY IS DISABLED IN COCOA 4

(See the new function ‘‘\verb&GB.GetNthSyzShifts&’’;
read below for an explanation of shifts.)

Chapter IV-12. Modules

One creates a shifted module in CoCoA using the “Shifts” (IV-12.3 pg.124) modifier:

Module(Shifts([P_1,...,P_r]),V_1,...,V_n)

where the “P_i"’s are integers or monomials in the current ring and, as usual, the “V_i”’s are lists of polynomials,
each with length r. This object represents the submodule, generated by “V_1,...,V_n", of the free module of
rank r which is the direct sum of “R(P_1),...,R(P_r)”. Here, “R(P_1i)” is the ring R with shifted degrees.
To explain these shifts, recall that in a CoCoA ring, the weights of the indeterminates are given by a weights
matrix, say W. The (multi)weight of the i-th indeterminate is given by the i-th column of W. By default, the
weights matrix is a single row of 1s. If “P_i” is an integer, then the homogeneous part of “R(P_1i)” of degree
d is the homogeneous part of R of degree “d+P_i”. If “P_i” is a monomial, then the homogeneous part of
“R(P_1i)” in multidegree d is the homogeneous part of R in multidegree “d+deg_W(P_i)”.

example

Use R ::= Qlx,y,z];

M := Module([x,y,z],[x"2,y,01);
LT(M.Gens[1]);

Vector(x, 0, 0)

Ss := Shifts([-3,-5,-2]);

M := Module(Ss, [x,y,z], [x"2,y,0]1);

M;

Module(Shifts([-3, -5, -21), [x, y, zl, [x"2, y, 01)
LT(M.Gens[1]); -- the leading term changes in the shifted module
Vector (0, y, 0)

Use S ::= Q[x,y,z],Weights(Mat([[1,2,3],[4,5,611));

M := Module(Shifts([xy, xzl), [x, yl, [x,z]1);

LT(M.Gens[1]);

Vector (0, y)

MDeg(M.Gens[1]); -- multidegree of y in R(xz), i.e. of (xz)y in R
[6, 15]

IV-12.4 Commands and Functions for Modules

The following are commands and functions for modules:

IV-12.4. Commands and Functions for Modules 125

BettiDiagram the diagram of the graded Betti numbers
BettiMatrix the matrix of the graded Betti numbers

Colon ideal or module quotient

Depth Depth of a module

E canonical vector

Elim eliminate variables

Ext presentation Ext modules as quotients of free modules
GB.GetBettiMatrix returns the Betti matrix computed so far
GB.GetNthSyz returns the part of the Nth syzygy module computed so far
GB.GetNthSyzShifts shifts of the Nth syzygy module computed so far
GB.GetRes returns the resolution computed so far
GB.GetResLen returns the length of the resolution computed so far
GB.ResReport status of an interactive resolution calculation
GBasis calculate a Groebner basis

GBasisb, and more calculations using the CoCoAServer
GBasisTimeout compute a Groebner basis with a timeout

GenRepr representation in terms of generators

Gens list of generators of an ideal

HColon ideal or module quotient

Interreduce, Interreduced interreduce a list of polynomials or vectors
Intersection intersect lists, ideals, or modules
IntersectionList intersect lists, ideals, or modules

IsIn check if one object is contained in another

IsZero test whether an object is zero

Len the length of an object

LT the leading term of an object

Max, Min a maximum or minimum element of a sequence or list
MinGens list minimal generators

Minimalize remove redundant generators

Minimalized remove redundant generators

MinSyzMinGens minimal generators of syzygies of minimal generators
Module convert an expression into a module

NF normal form

NFsAreZero test if normal forms are zero

Rank rank of a module

ReducedGBasis compute reduced Groebner basis

Res free resolution

Size the amount of memory used by an object

Syz syzygy modules

SyzMinGens syzygy module for a set of minimal generators
Syz0fGens syzygy module for a given set of generators

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

126 Chapter IV-12. Modules

Chapter IV-13

Groebner Bases and Related
Computations

IV-13.1 Introduction to Groebner Bases in CoCoA

The heart of the CoCoA system is a implementation of Buchberger’s algorithm for computing Groebner bases
for ideals and modules over polynomial rings with coefficients in a field. CoCoA’s Groebner basis engine can
be used to compute Groebner bases, syzygies, free resolutions, Hilbert functions and Poincare series, and to
eliminate variables and find minimal sets of generators. Considerable control over the computations is provided
through CoCoA’s “The Interactive Groebner Framework” (IV-13.3 pg.129).

Groebner bases can be calculated over Q, but large calculations depending on Groebner bases will take much
less time over finite fields. A common tactic is to work mod large primes to get an idea of behavior expected
over Q.

It would eventually be nice to have descriptions within this online help system of the specific algorithms
used by CoCoA. For now, see “Pointers to the Literature” (II-1.5 pg.24) for references.

IV-13.2 Commands and Functions for Groebner-Type Computa-
tions

The following are the commands and functions for computations based on Groebner bases. In addition to
these, there are many commands that provide finer control over the computations (see the next section: “The
Interactive Groebner Framework” (IV-13.3 pg.129)).

127

128

AffHilbert
AffHilbertFn
AffHilbertSeries
AffPoincare
BettiDiagram
BettiMatrix

Colon

Dim

Elim

EquiIsoDec

FGLM5

GB.Complete
GB.GetBettiMatrix
GB.GetNthSyz
GB.GetNthSyzShifts
GB.GetRes
GB.GetResLen
GB.ResReport
GB.StartGBasis
GB.StartMinGens
GB.StartMinSyzMinGens
GB.StartRes
GB.StartSyz
GB.StartSyzMinGens
GB.Stats

GB.Step

GB.Steps

GBasis

GBasisb5, and more
GBasisTimeout

GBM

GCD

HColon

HGBM

Hilbert

HilbertFn
HilbertPoly
HilbertSeries
HilbertSeriesMultiDeg
HilbertSeriesShifts
HIntersection
HIntersectionList
Homogenized
HSaturation
HVector

Chapter IV-13. Groebner Bases and Related Computations

the affine Hilbert function

the affine Hilbert function

the affine Hilbert-Poincare series

the affine Hilbert-Poincare series

the diagram of the graded Betti numbers

the matrix of the graded Betti numbers

ideal or module quotient

the dimension of a ring or quotient object
eliminate variables

equidimensional isoradical decomposition

perform a FGLM Groebner Basis conversion
Complete an interactive Groebner-type calculation
returns the Betti matrix computed so far

returns the part of the Nth syzygy module computed so far
shifts of the Nth syzygy module computed so far
returns the resolution computed so far

returns the length of the resolution computed so far
status of an interactive resolution calculation

start interactive Groebner basis computation

start interactive minimal generator calculation
start interactive calc., min. syzs. of min. gens.
start interactive resolution computation

start interactive syzygy computation

start interactive calc. of syzygies of min. gens.
status of an interactive Groebner-type calculation
take one step in an interactive Groebner-type calculation
take steps in an interactive Groebner-type calculation
calculate a Groebner basis

calculations using the CoCoAServer

compute a Groebner basis with a timeout
intersection of ideals for zero-dimensional schemes
greatest common divisor

ideal or module quotient

intersection of ideals for zero-dimensional schemes
the Hilbert-Poincare’ function

the Hilbert function

the Hilbert polynomial

the Hilbert-Poincare series

the Hilbert-Poincare series wrt a multigrading

the Hilbert-Poincare series

intersection of ideals

intersection of ideals

homogenize with respect to an indeterminate
saturation of ideals

the h-vector of a module or quotient object

IdealAndSeparators0fPoints ideal and separators for affine points
IdealAndSeparators0fProjectivePoints ideal and separators for points
IdealOfPoints ideal of a set of affine points
IdealOfProjectivePoints ideal of a set of projective points

Intersection intersect lists, ideals, or modules
IntersectionlList intersect lists, ideals, or modules

LCM least common multiple

MinGens list minimal generators

MinSyzMinGens minimal generators of syzygies of minimal generators
Multiplicity the multiplicity (degree) of a ring or quotient object
NF normal form

NFsAreZero test if normal forms are zero

Poincare the Hilbert-Poincare series

PoincareMultiDeg the Hilbert-Poincare series wrt a multigrading
PoincareShifts the Hilbert-Poincare series

Radical radical of an ideal

RadicalOfUnmixed radical of an unmixed ideal

ReducedGBasis compute reduced Groebner basis

Res free resolution

Saturation

o e

saturation of ideals

PR DI R

IV-13.3. The Interactive Groebner Framework 129

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

IV-13.3 The Interactive Groebner Framework

For the following computations:

Groebner bases
minimal generators

syzygies
free resolutions

* ¥ ¥ ¥ ¥

elimination of variables
CoCoA provides the following features:

step-by-step computation

monitoring of the execution (verbose mode)

various types of truncation (degree, resolution length, or regularity)
customization of algorithms (through the GROEBNER panel and P-Series).

* ¥ ¥ ¥

It works like this: instead of using one of the normal Groebner basis-type commands (listed in the previous
section), start the computation with one of the commands,

* GB.Start_GBasis -- start interactive Groebner basis computation

* GB.Start_MinGens -- start interactive minimal generator calculation
* GB.Start_Res -- start interactive resolution computation

*

GB.Start_Syz -- start interactive syzygy computation
After starting the computation, the following commands are available:

GB.Complete -- Complete an interactive Groebner-type calculation
GB.GetBettiMatrix -- returns the Betti matrix computed so far

GB.GetNthSyz -- returns the part of the Nth syzygy module computed so far
GB.GetNthSyzShifts -- shifts of the Nth syzygy module computed so far
GB.GetRes -- returns the resolution computed so far

GB.GetResLen -- returns the length of the resolution computed so far
GB.ResReport -- status of an interactive resolution calculation

GB.Stats -- status of an interactive Groebner-type calculation

GB.Step, GB.Steps -- take steps in an interactive Groebner-type calculation
ReducedGBasis —-- compute a reduced Groebner basis

LR R R R 3

Almost all of these functions report more information if you set the Verbose flag in the GROEBNER, panel by
typing

Set Verbose;

(to unset, enter “Unset Verbose”). For more possibilities, see “Options in the GROEBNER Panel” (V-1.11

pg.143).
Use of the Interactive Groebner Framework is illustrated in the examples below.

IV-13.4 Example: Interactive Groebner Basis Computation

example
Use R ::= Q[t,x,y,z];
I := Ideal(t"3-x,t"4-y,t"5-2);
GB.Start_GBasis(I); -- start the interactive framework
I.GBasis; -- the Groebner basis is initially empty
Null
GB.Step(I); -- a single step of the computation
I.GBasis;

130 Chapter IV-13. Groebner Bases and Related Computations

I.GBasis;

[t°3 - x]

GB.Steps(I,4); -- 4 more steps

I.GBasis;

[t"3 - %, -tx +y, t72y - x"2]

GB.Complete(I); -- complete the computation

I.GBasis;

[t"3 - x, -tx +y, -ty + 2z, -y"2 + xz, -Xx"2 + tz, t"2z - xy]
ReducedGBasis(I);

[t"3 - x, tx -y, ty - 2z, y°2 - xz, x"2 - tz, t72z - xy]

Note that Groebner bases calculated in the interactive framework may not be reduced, as illustrated in the
final step of the example.

IV-13.5 Example: Verbose Mode

The following example illustrates the use of “Verbose” mode. For more information, see “Verbose” (V-1.15
pg.144).

example

Set Verbose;
Use R ::= Q[t,x,y,z];

I := Ideal(t"3-x,t"4-y,t"5-2);
G := GBasis(I);

.................. 18

IPs 1IVs Gens GBases MinGens MinDeg

0 0 3 6 0 -1

Betti numbers:

18 steps of computation
Describe I; -- more information, (it would help to °‘\verb&Set Indentation&’’)
Record[Type = IDEAL, Value = Record[Gens = [t"3 - x, t74 -y, t75 -
z], GBasis = [t"3 - x, -tx +y, -ty + z, -y"2 + xz, -x"2 + tz, t"2z -
xyl, IVs = [], Rules = [t"3 - x, t74 -y, t°6 -z, -tx + y, t72y -
X2, x"3 - ty"2, -ty + z, -y"2 + xz, -x"2 + tz, t"2z - xyl,
Discrepancy = -1, KFL = [1, 7, 14, 4, 16, 9, 10, 20, 22, 23, 28, 18,
0, 39, 42]111

IV-13.6 Example: Interactive Resolution Computation

In this example we compute the minimal free resolution of the ideal I generated by the 2 by 2 minors of a
catalecticant matrix, A, using the interactive environment of the system. We define the ideal I, and start the
computation of its minimal free resolution using the Hilbert-driven algorithm described in

A. Capani, G. De Dominicis, G. Niesi, L. Robbiano, “Computing Minimal Finite Free Resolutions”, J. Pure
Appl. Algebra, Vol. 117-118, Pages 105-117, 1997

IV-13.7. Example: Truncations 131

example

Use R ::= Z/(32003)[z[0..3,0..3,0..3]]; —- set up the ring
A := Mat ([-- define the ideal

[z[3,0,0], z[2,1,0], =z[2,0,1]],

[z[2,1,0], =z[1,2,0], =z[1,1,11],

[z[2,0,1], =z[1,1,1], =z[1,0,211,

[z[1,2,0], z[0,3,0], =z[0,2,1]1],

[z[1,1,1], =z[0,2,1], =[0,1,2]],

[z[1,0,2], z[0,1,2], z[0,0,3]]
IDH
I := Ideal(Minors(2,A));
GB.Start_Res(I); -- start interactive framework
GB.Steps(I,1000); -- first 1000 steps

GB.GetRes(I);
0 -—> R™176(-5) -—> R~189(-4) --> R"105(-3) --> R~27(-2)

Minimal Pairs, : 650
Groebner Pairs : 14
Minimal (Type S) : 636
H-Killed (Type S0) : 9
GB.Complete(I); -- complete the calculation

GB.GetRes(I);
0 -=> R(-9) --> R"27(-7) --> R~105(-6) --> R"189(-5) -—>
R~189(-4) --> R~105(-3) --> R"27(-2)

Minimal Pairs, : 730
Groebner Pairs : 25
Minimal (Type S) : 705

Minimal (Type Smin) : 616
Minimal (Type SO) : 89
H-Killed (Type S0) : 78
Hard (Type SO) : 11

IV-13.7 Example: Truncations

The user may assign one or more of three different truncation conditions to a module: DegTrunc, ResTrunc
and RegTrunc; in this case the execution will stop when a bound is reached (see the examples, below).
DEGREE TRUNCATION:

example

Use R ::= Z/(32003) [a,b,c,d,e];

I := Ideal(atb+c+d, ab+bc+cd+da, abc+bcd+cda, abcd-e”4);
I.DegTrunc := 3;

GB.Start_GBasis(I);

GB.Complete(I);

LT(I.GBasis);

[a, b"2, bc~2]

132 Chapter IV-13. Groebner Bases and Related Computations

I.DegTrunc := 6;

GB.Complete(I);

LT(I.GBasis);

[a, b"2, bc”"2, bcd"2, c"2d"2, cd"4, be"4, d"2e"4]

RESOLUTION TRUNCATION:

example

Use R ::= Z/(32003) [x[1..101];

I := Ideal(Indets());

I.ResTrunc := 4;

GB.Start_Res(I);

GB.Complete(I);

GB.GetRes(I);

0 --> R"252(-5) --> R"210(-4) --> R"120(-3) --> R~45(-2) --> R~10(-1)

REGULARITY TRUNCATION: We know that the Castelnuovo regularity of I in the following example is
6

example

Set Verbose;

Use R_Gen ::= Z/(5) [x,y,z,t];
M :=3; N := 4;

D := DensePoly(2);

P := Mat([[Randomized(D) | J In 1..N] | I In 1.. M]);
I := Ideal(Minors(2,P));
GB.Start_Res(I);
GB.Complete(I);

-- text suppressed --

Betti numbers: 17 48 48 18
318 steps of computation

I := Ideal(Minors(2,P));

GB.Start_Res(I);

I.RegTrunc := 6; -- here we store the Castelnuovo Regularity
GB.Complete(I);

Betti numbers: 17 48 48 18
281 steps of computation

GB.GetBettiMatrix(I);

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 18
0 0 16 0
0 0 32 0
0 48 0 0
17 0 0 0

IV-13.8 Hilbert-Driven Computations

CoCoA Groebner basis algorithms will use knowledge of a Poincare series to improve efficiency.

IV-13.8. Hilbert-Driven Computations 133

example

Use R ::= Qlw,x,y,z];

PS := HP.PSeries(l + 2w + 3w™2 + 4w"3 + 5w"™4 + 6u”5 + 5w"6 +

4y~7 + 3w"8 + 2w"9 + w~10,2);

PS;

(1 +2w + 3w™2 + 4w™3 + 5w™4 + 6w™5 + 5w™6 + 4w"7 + 3w™8 + 2w"9 + w™10) / (1-w) "2
I := Ideal((xy-zw) 3, (xz-yw)"3);

I.PSeries := PS; —- this is how to let CoCoA know about the Poincare series

G := GBasis(I);

134 Chapter IV-13. Groebner Bases and Related Computations

Chapter 1V-14

CoCoAServer

IV-14.1 Introduction to CoCoAServer

Waiting for the completely new CoCoA-5, based on the C++ library CoCoALib (open source, GPL), you may
get a good feel of the new capabilities using the CoCoAServer: here the word “server” stands for “serving
process’ doing the computations for CoCoA on the same computer (as opposed to “computer server” which
runs, say, the mail services).

You need to start the CoCoAServer before calling these functions (otherwise an error message will remind
you). You don’t need to worry about what this really means: what you have to do is just pressing a button ;-).
Instructions for starting the server vary depending on the User Interface you use:

[text] From a shell call “COCOADIR/CoCoAServer”.
[emacs] From the CoCoA menu select “(re)start CoCoAServer”.

It will respond to any other request from you and from other CoCoA-4 processes connected to the same
machine on the same port (See “OpenSocket” (VI-15.6 pg.301)). You may leave the CoCoAServer running on
your computer even if you don’t use it: it takes no cpu time while waiting for requests.

IV-14.2 Functions using CoCoAServer

The following are the functions using CoCoAServer :

135

136

BBasisb

Colon

FGLM5

GBasis

GBasisb, and more

Gin, Ginb

Homogenized

Intersection

IsServerReady

IsTreeb

LT

MakeCheck

Numerical .BBasisOfPointsb
Numerical.BBasisOfPointsInIdealb
Numerical.FirstVanishingRelationsb
Numerical.FirstVanishingRelationsInIdealb
Numerical.GBasisOfPointsb
Numerical.GBasisOfPointsInIdealb
Numerical .HBasisOfPointsb
Numerical.HBasisOfPointsInIdealb
Numerical.QR5

Numerical.SVD5

PreprocessPtsb

Saturation

Syz

Chapter IV-14. CoCoAServer

Border Basis of zero dimensional ideal

ideal or module quotient

perform a FGLM Groebner Basis conversion

calculate a Groebner basis

calculations using the CoCoAServer

generic initial ideal

homogenize with respect to an indeterminate

intersect lists, ideals, or modules

checks if CoCoAServer is running

checks if a facet complex is a tree

the leading term of an object

run a series of tests

Border basis of almost vanishing ideal for a set of points

border basis of an almost vanishing sub-ideal for a set of points and ic
First vanishing relations for a set of points

First almost vanishing polynomials for a set of points and ideal
GBasis of almost vanishing ideal for a set of points

almost GBasis of an almost vanishing sub ideal for a set of points and
almost vanishing ideal’s Macaulay basis for a set of points

Macaulay basis of a almost vanishing sub ideal for a set of points and
QR-decomposition of a matrix

Singular value decomposition of a matrix

A representative subset of points

saturation of ideals

syzygy modules

Part V

Working the System

137

Chapter V-1

CoCoA Panels

V-1.1 Introduction to Panels

The user can customize some features of CoCoA by setting (or unsetting) some boolean options (ON/OFF)
which are grouped in three panels. The function “Panels” (VI-16.3 pg.306) returns the list of panel names,
and the settings in a particular panel can be seen using the function “Panel” (VI-16.2 pg.305) as illustrated in
the example below.

example
Panels();
["GENERAL", "GROEBNER"]
Panel (GENERAL) ;
Echo............... : FALSE
Timer.............. : FALSE
Trace.............. : FALSE
Indentation........ : FALSE
TraceSources....... : FALSE
SuppressWarnings... : FALSE
ComputationStack... : FALSE

V-1.2 Setting Options

Each option name is unique, not just among the options in a particular panel, but among the options from all pan-
els. The command “Set” followed by an option name (without parentheses or quotes) sets the corresponding op-
tion to TRUE. Similarly, “Unset” sets the option to FALSE. In addition, one may use the “Set” command to set

an option either true or false using the syntax: “Set option-name := TRUE” or “Set option-name := TRUE”.
example
Use R ::= Q[x,y,z];
L := [(x+y)"N | N In 1..3];
Set Indentation; -- print each component on a separate line
L;
L;
C
X +y,
X2 + 2xy + y°2,
x"3 + 3x72y + 3xy~2 + y~3]
Unset Indentation;

139

140 Chapter V-1. CoCoA Panels

The function “Option” (VI-15.7 pg.302) takes as parameter an option name and returns the (boolean) value
of the option. It is particularly useful within user-defined functions as illustrated in the example below:
example

Define Print_UnIndented(X)
Opt := Option(Indentation);
Unset Indentation;

Print (X);
Set Indentation := Opt;

EndDefine;

R := Record[X="test",L=[1,2,3]];
Set Indentation;
Print_UnIndented(R);

Record[L = [1, 2, 3], X = "test"]
UnSet Indentation;
Print_UnIndented(R);

Record[L = [1, 2, 3], X = "test"]

V-1.3 Options in the GENERAL Panel

The options in the GENERAL panel and their default settings are as follows:

example

Panel (GENERAL) ;

Echo............... : FALSE

Timer.............. : FALSE

Trace.............. : FALSE

Indentation........ FALSE

TraceSources....... : FALSE

SuppressWarnings... : FALSE

ComputationStack... : FALSE

They are discussed separately, below.

V-1.4 Echo

If the Echo option is on, then the system echoes every command at the top level. When logging a CoCoA
session, one would set Echo to TRUE in order to log both the input as well as the output in a CoCoA session
(see “OpenLog” (VI-15.3 pg.300)).

example

1+1;

|
nmn
mM m
=
N
N
. w
—_
w -
—_

Unset Echo;
SET(Echo, FALSE)

V-1.5. Timer 141

V-1.5 Timer

If the Timer option is on, then the system displays the execution time of each command submitted at top-level.
example

Use R ::= Z/(32003) [t,x,y,z],Lex;

N := 31;

I := Ideal(t"N+t"6+t-x, t 5-t-y, t"9-t-z);
Set Timer;

Null

T := GBasis(I);

Cpu time = 2.88, User time = 30

To time a single command, use ‘‘\verb&Time&’’ (\ref{Time} pg.\pageref{Time}). For example,
have written °‘\verb&Time T := GBasis(I)&’’ instead of setting the timer.

V-1.6 Trace

If the Trace option is on, then the system echoes every command at every level. This is useful for debugging
programs. The following (toy) user-defined function returns the same error message for N = 3 and N = 6.
Turning the Trace option on makes the sources of the trouble clear.

example
Define T(N)
M := 1/(N-3);
If N =6 Then N := 3 EndIf;
M= 1/(N-3);
Return M;
EndDefine;
T(3);
ERROR: Division by zero
CONTEXT: 1 / (N - 3)
T(6);
ERROR: Division by zero
CONTEXT: 1 / (N - 3)
Set Trace;
T(3);
T(3)
M:=1/ (N-3); If N=6 Then N := 3 EndIf; M := 1/ (N - 3); Return(M);
M:=1/ N -3)
ERROR: Division by zero
CONTEXT: 1 / (N - 3)
T(6);
T(6)
M:=1/ (N-23); If N=6 Then N := 3 EndIf; M :=1 / (N - 3); Return(M);
M:=1/®-3)
If N=6 Then N := 3 EndIf
N :=3
M:=1/ Q- 23)

above, we

142 Chapter V-1. CoCoA Panels

ERROR: Division by zero
CONTEXT: 1 / (N - 3)

V-1.7 Indentation

If the Indentation option is on, then the system performs some indentation on outputs. For example, each entry
of a matrix will be printed on a new line.

example
Use R ::= Q[x,y,z];
T := GBasis(Ideal(x"2-xy+z"3,xz-y 4,x"3+y 3+xyz+z"5));
T;

[z°3 + x72 - xy, -y"4 + xz, x"22"2 - xyz"2 - x"3 - y"3 - xyz, x74 -
2x7"3y + x"2y°2 + x"3z + y~3z + xyz"2]
Set Indentation;
T;
L
z"3 + x°2 - xy,
-y"4 + xz,
x"2z72 - xyz"2 - x°3 - y°3 - xyz,
X"4 - 2x73y + x72y"2 + x73z + y“3z + xyz"2]

V-1.8 TraceSources
If the TraceSources option is on, then the name of every file read with the “Source” (VI-19.16 pg.337) command
will be echoed.

V-1.9 SuppressWarnings

If the SuppressWarnings option is on, then the system suppress warning statements.
example

Use Z/(4);
-— WARNING: Coeffs are not in a field
-- GBasis-related computations could fail to terminate or be wrong

Set SuppressWarnings;
Use Z/(4);

V-1.10 ComputationStack

If the ComputationStack option is on, a special variable named “ComputationStack” contains a list tracing
errors that occur during the execution of CoCoA commands. This option is useful for debugging programs.
example

Define Test (X)
If X>=0 Then PrintLn(1/X) EndIf;
EndDefine;

Set ComputationStack;
Test (0);

V-1.11. Options in the GROEBNER Panel 143

ERROR: Division by zero
CONTEXT: 1 / X
S := ComputationStack; -- to save typing later
S[1]; -- the command that produced the error
Println(1 / X)
S[2]; -- S[1] was part of an If-statement
0 Then PrintLn(1l / X) EndIf

H
H
>
A\
I

S[3]; -- the command issued by the user
If X >= 0 Then PrintLn(l / X) EndIf;

V-1.11 Options in the GROEBNER Panel

The options in the GROEBNER panel and their default settings are as follows:

example
Panel (GROEBNER) ;
Sugar........... TRUE
FullRed......... : TRUE
SingleStepRed... : FALSE
Verbose......... : FALSE

V-1.12 Sugar

If the Sugar option is on, as it is by default, then the critical pairs are processed by using the “sugar” strategy:
the pairs are processed in an order which is as close as possible to the order which would have been chosen if
the polynomials had been homogeneous. For details, see the article:

A. Giovini, T. Mora, G. Niesi, L. Robbiano, C. Traverso, “‘One sugar cube, please’ or selection strategies in
the Buchberger algorithm,” In Proc. ISSAC‘91, 49-54 (1991), Stephen M. Watt, editor, New York, ACM Press.

V-1.13 FullRed

If FullRed is set to TRUE, then when a normal form is required in any Groebner-type computation, CoCoA

will reduce all monomials in a polynomial; if FullRed is FALSE, only the leading terms will be reduced. The
default is to have FullRed set to TRUE.

example

UnSet FullRed;

Use R ::= Qlx,y];
Interreduced([xy 3+y~2+x,x]);
[x, y72 + x]

Set FullRed;

Interreduced([xy 3+y~2+x,x]);
[x, y™2]

144 Chapter V-1. CoCoA Panels

V-1.14 SingleStepRed

Sorry: documentation not yet available.

V-1.15 Verbose

During a Groebner basis (or Groebner-like) computation prints some progress information. Usually one dot
represents a reduction.

V-1.16 Commands and Functions for Panels

The following are commands and functions for panels:

Option status of a panel option

Panel print status of a panel’s options

Panels list of CoCoA panels

Reset reset panels and random number seed to defaults
ResetPanels reset panels to their default values

Set-Unset set and unset panel options

Unset set and unset panel options

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”.

Chapter V-2

CoCoA’s Help System

V-2.1 Online Help

CoCoA’s online help is roughly divided into two parts: a manual and a list of commands. The manual includes
a tutorial which can be started by entering

7tutorial

If you are a new user of CoCoA, the tutorial is a good place to start. To see the titles of the sections of the
online manual, enter “H.Toc()”; to see a list of commands, enter “H.Commands("")”.

Each section of the manual and each command is uniquely identified by a set of keywords. The set of
keywords always includes the title of the section or the title of the command. The online help command “?”
takes a string from the user and searches for a match among the keywords. For instance, “?gbasis” will display
information about the function “GBasis” (VI-7.17 pg.217). Note that when using “?”, the keyword does not
appear in quotes. Also, a semicolon is not required.

The command “?7” will return a list of entries in the manual that contain a given keyword. For instance,
“?7gbasis” returns

See:
GB.Start_GBasis
GBasis
ReducedGBasis

Each command is associated with a list of topics. (This applies only to commands, not to sections of the
manual.) The online help function “H.Commands” takes a string from the user and searches for all matches
among these topics. For each match, the title of the command and a brief description is displayed. For instance,
“H.Commands ("poly")” will find all commands having to do with polynomials. Information about a specific
command can then be retrieved with “?”. A list of topics is provided by “H.Commands()”, with no argument.

IMPORTANT NOTE: Searches are case insensitive and your keyword need only be a substring to make a
match.

For a thorough description of the search function “?”, type “? ?” with a space between the two questions
marks.

Tips on using online help and summary of the online help functions appear below. Enter “H.Browse();” to
see the next section.

V-2.2 Quick Tips for Using Online Help

Here are some tips for using the online help system:

1. Searches are case insensitive and your search string need only be a substring of a keyword to make a
match. Thus, for instance, to find the section of the manual entitled “Commands and Functions for Polynomials”
(IV-9.3 pg.114), it is enough to type: “?for poly”.

2. In general, it is best to start with short keywords in order to maximize the number of matches.

3. If you cannot find a match using “?”, try using “H.Command” to search by type. For example, suppose you
are looking for a command that will give the remainder of the division of one polynomial into another. Trying

145

146 Chapter V-2. CoCoA’s Help System

“?remainder” produces no matches. You know that the command you are looking for operates on polynomials,
so try “H.Command ("poly")”. It produces a list of a little over 30 commands, among which will be listed:

* DivAlg — division algorithm.

4. The command “?7keyword”, with two question marks, will list all matches even if “keyword” exactly
matches a keyword for the online help system.

V-2.3 Commands and Functions for Online Help

The following are commands and functions for CoCoA online help:

Describe information about an expression

Functions list the functions of a package

H.Browse browse the online help system

H.Commands list commands according to type

H.Man search online help system

H.OutCommands print command descriptions to a file
H.OutManual print the online manual to a file

H.SetMore more-device for online help

H.Syntax display the syntax of a command

H.Toc display the Table Of Contents of the online manual
H.Tutorial run the CoCoA tutorial

H.UnSetMore more-device for online help

Help extend online help for user-defined functions
Man search online help system

Starting list functions starting with a given string

For details look up each item by name. Online, try “?ItemName” or “H.Syntax("ItemName")”. A good
place to start is with the command, “?” itself. To see more information about “?”, enter “? ?” (with a space
between the two question marks)

V-2.4 Other Help

1. A user may provide help and sometimes (rarely) get help for a user-defined function using the “Help” feature
of the “Define” (VI-4.4 pg.182) command.

example
Help(Q);
Type Help < Op > to get help on operator < Op >
Help("GBasis"); -- note the typical response, one of the main

-- motivations for the author of the online manual.
No help available for GBasis

2. The command, “Describe” (VI-4.13 pg.188), can be used to find more information about functions.
example

Describe Function("Insert");
Define Insert(L,I,0)
$list.Insert(L,I,0)
EndDefine;
Describe Function("‘‘\verb&$list.Insert&’’");
Define Insert(L,I,0)
If NOT(Type(L) = LIST) Then
Return(Error (ERR.BAD_PARAMS,": expected LIST"))
ElsIf I = Len(L) + 1 Then
Append(L,0)

V-2.4. Other Help

147
ElsIf I > Len(L) Then

Return(Error (ERR.INDEX_TOO_BIG,I))
ElsIf I <= 0 Then

Return(Error (ERR.INDEX_NEG,I))
Else

L := Concat([L[JI|J In 1..(I - 1)]1,[0]1,[L[J1IJ In I..Len(L)]);
EndIf;

EndDefine;

3. The function, “Functions” (VI-6.17 pg.209), may be used to list all functions defined in a package. Note:
“Functions ("$user")” lists all current user-defined functions.

example
Functions ("$mat");

[About (), Man(), Identity(N), Transposed(M), Submat(M,Rows,Cols),
Jacobian(S), Resultant(F,G,X), DirectSum(M1,M2), BlockMatrix(LL),
ColumnVectors(M), Complement(M,I,J), Bip(M,J), Pfaffian(M),

Sylvester(F,G,X), ExtendRows(M,N), PushRows(M,N), ConcatRows(L),
PkgName ()]

The list of packages is given by “Packages()”.

4. The function “Starting(S)” where S is a string returns a list of all functions starting with the string S.

example
Starting("Su");

["SubstPoly", "SubSet", "Submat", "Sum", "Subst", "Support"]

148 Chapter V-2. CoCoA’s Help System

Chapter V-3

Fine Tuning At Start-up

V-3.1 User Initialization

At the beginning of a CoCoA session, CoCoA reads in a file called “init.coc”. This file performs certain
initialization routines, reads in standard packages, and sets up global aliases for the packages. It also reads in
a file called “userinit.coc”. It is in this latter file that users should put their own commands to be run when
CoCoA starts.

For example, suppose a user wants a file called “MyFile.coc”— containing function definitions, variable
assignments, etc.—to automatically be read into the CoCoA system on start-up. It suffices to add the following
line to “userinit.coc”:

Source("MyFile.coc");

To load the package with identifier “$contrib/mypackage”, contained in a file “MyPackage.cpkg” and use MP
as an alias, it suffices to add the following lines to “userinit.coc” (you may want to look at the section of the
manual entitled “Package Sourcing and Autoloading” (I11-9.4 pg.72) for more details):

Source ("MyPackage.cpkg") ;
Alias MP := $contrib/mypackage;

149

150 Chapter V-3. Fine Tuning At Start-up

Chapter V-4

CoCoA Interfaces

V-4.1 CoCoA on a Macintosh

The CoCoA user interface on the Macintosh OS 9 is based on Mel Park’s PlainText (v.1.6) which handles very
large text files (larger than 32K). It uses standard Macintosh editing techniques, so Macintosh users should be
familiar with its basic operations.

Double-clicking on the CoCoA icon or on the icon of a CoCoA document will start up the system. The
system draws the menu bar, opens a text editing window and loads the CoCoA packages and then possibly
user’s packages (via the “userinit.coc” file).

After the system is started, it is ready to receive and execute commands. To execute a CoCoA command,
type it into the window, ending it with a semicolon, then press the “enter” key. If the command occupies more
than one line then highlight the whole command using the mouse and then press the “enter” key.

At this point the following part of the text of the active window is taken as being the “current command’:

* if there is no selection (the cursor is blinking somewhere), then the row containing the cursor is taken as
current command;

*if there is a non-null selection range, then the whole selection is taken as current command (in this way
the system can process multiline commands).

The editor uses all the standard Macintosh editing techniques as well as some special ones:

* Double-clicking on a word select the entire word. * Triple-clicking anywhere in a line selects the whole
line. * Double-clicking on or just before a parenthesis, a bracket, or a brace, i.e. one of following symbols “(” ,
7L C €17 {7, “Y causes all the text between that symbol and its matching symbol to become selected.

IMPORTANT NOTE. Devices of type FILE are not yet available with the Macintosh interface.

V-4.2 CoCoA under Unix

Probably the best way to run CoCoA under Unix is through the editor, emacs, in shell-mode. In that way,
one may easily edit or repeat commands. From within emacs, issue the command “META-x shell”. You will
be presented with a Unix prompt within emacs. Change to the CoCoA directory, and start CoCoA. For more
information about shell-mode, issue the emacs command “Control-h m” after the shell is started. (You may
want to use the emacs command: “META-x set-variable comint-scroll-show-maximum-output” to set the
variable comint-scroll-show-maximum-output to the value 1.)

If running CoCoA in an xterm, it may be best to first start the xterm with the command
“xterm -sb -sl 512” (scroll bar enabled, saving 512 lines). In addition, you may want to increase the vertical
size of your window, e.g., “xterm -sb -sl 512 -geometry 80x40”. In that way, output that scrolls off of the
screen is captured and easily reviewed.

At any rate, complicated CoCoA command sequences or any sequences that you may want to repeat should
be saved in a text editor. The commands can then be executed by copying and pasting into a CoCoA window
or using the “Source” (VI-19.16 pg.337) command. In addition, you may want to keep a log of your CoCoA
session using the command “OpenLog” (VI-15.3 pg.300).

151

152 Chapter V-4. CoCoA Interfaces

V-4.3 CoCoA under Windows/DOS

Sorry this section is still under construction. Probably the best advice I could give is to repartition your disk
and install Linux. ;j,

Part VI

Alphabetical List of Commands

153

Chapter VI-0

Special Characters

VI-0.1 Shortcuts

syntax
M:N M, N: MODULE of IDEAL
A ><B A, B: LIST
<< S:STRING
? S:STRING
77 S:STRING
QA A:TAGGED
A..B A,B:INT or A,B:indeterminates
Description

“:” is equivalent to “Colon” (VI-3.17 pg.176): “M : N” stands for “Colon(M, N)”.

“$><$” is equivalent to “CartesianProduct, CartesianProductList” (VI-3.2 pg.170): “A >< B” stands
for “CartesianProduct (A, B)”.

“$<<$” is equivalent to “Source” (VI-19.16 pg.337): “<< "myfile.cocoa"” stands for “Source("myfile.cocoa)"”.

“?” is equivalent to “Man” (VI-13.3 pg.273): “? string” stands for “Man("string")”.

“??” is equivalent to “Man” (VI-13.3 pg.273): “?? string” stands for “Man("string", 0)”.

“@” is equivalent to “Untagged” (VI-21.3 pg.352): “@A” stands for “Untagged(A)”.

“..7 is the “Range Operator” (III-3.6 pg.53).

See Also: Colon (VI-3.17 pg.176), Source (VI-19.16 pg.337), CartesianProduct, CartesianProductList
(VI-3.2 pg.170), Man (VI-13.3 pg.273), Untagged (VI-21.3 pg.352), Range Operator (I11-3.6 pg.53), Character
Set and Special Symbols (I11-2.1 pg.47)

155

156 Chapter VI-0. Special Characters

Chapter VI-1

A

VI-1.1 Abs

Abs(N:INT) :INT
Abs (N:RAT) :RAT

syntax

Description

This function returns the absolute value of N.

example

Abs(-2/3);
2/3

VI-1.2 Adjoint

syntax
Adjoint (M:MAT) :MAT

where M is a square matrix.

Description

This function returns the adjoint matrix of M.

example

Adjoint (Mat ([[x,y,z], [t,y,x], [x,x"2,xy]]1));
Mat ([
[-x"3 + xy~2, -xy~2 + x"2z, xy - yzl,
[-txy + x72, x"2y - xz, -x"2 + tz],
[tx"2 - xy, -x"3 + xy, -ty + xy]

Adjoint (Mat ([[1%5,2%5], [3%5,1%511));
Mat ([

[1 %5, -2 7% 5],
(2% 5, 17% 5]

157

158 Chapter VI-1. A

VI-1.3 AffHilbert
syntax

AffHilbert(R:RING or TAGGED("Quotient")) :TAGGED("‘‘\verb&$hp.Hilbert&’’")
AffHilbert (R:RING or TAGGED("Quotient"),N:INT):INT

Description

The first form of this function computes the affine Hilbert function for R. The second form computes the N-
th value of the affine Hilbert function. The weights of the indeterminates of R must all be 1. For repeated
evaluations of the Hilbert function, use “EvalHilbertFn” (VI-5.9 pg.199) instead of “Hilbert(R,N)” in order
to speed up execution.

This function is the same as “AffHilbertFn” (VI-1.4 pg.158).

The coefficient ring must be a field.

example
Use R ::= Qlx,y,z];
AffHilbert (R/Ideal(z"4-1, xz"4-y-3));
H(O) =1
H(1) =3

H(t) = 4t - 2 for t >= 2

See Also: AffHilbertSeries (VI-1.5 pg.158), EvalHilbertFn (VI-5.9 pg.199)

VI-1.4 AffHilbertFn

syntax
AffHilbertFn(R:RING or TAGGED("Quotient")):TAGGED("‘‘\verb&$hp.Hilbert&’’")
AffHilbertFn(R:RING or TAGGED("Quotient") ,N:INT):INT

Description

Same as “AffHilbert” (VI-1.3 pg.158).
See Also: EvalHilbertFn (VI-5.9 pg.199), HilbertPoly (VI-8.19 pg.232), HVector (VI-8.27 pg.236),
HilbertSeries (VI-8.20 pg.232)

VI-1.5 AffHilbertSeries
syntax

HilbertSeries(M:RING or TAGGED("Quotient")):TAGGED("$hp.PSeries")

Description

This function computes the affine Hilbert-Poincare series of M. The grading must be a positive Z!-grading (i.e.
“WeightsMatrix” (VI-23.2 pg.357) must have a single row with positive entries), and the ordering must be
degree compatible (i.e. for a buggy behaviour of cocoa-4, “0rd” (VI-15.8 pg.302) must have all 1’s in the first
row). In the standard case, i.e. the weights of all indeterminates are 1, the result is simplified so that the power
appearing in the denominator is the dimension of M + 1.

It is exacly the same as “AffPoincare” (VI-1.6 pg.159).

NOTES:

(i) the coefficient ring must be a field.

(ii) these functions produce tagged objects: they cannot safely be (non-)equality to other values.

For further details on affine Hilbert functions see the book: Kreuzer, Robbiano “Computer Commutative
Algebra II’, Section 5.6.

VI-1.6. AffPoincare 159

example

Use R ::= Q[x,y,z];
AffPoincare(R/Ideal(z"4-1, xz"4-y-3));
1+x+x2+x"3)/ (1-=x)"2

See Also: AffHilbert (VI-1.3 pg.158), HilbertSeries (VI-8.20 pg.232)

VI-1.6 AffPoincare
syntax

AffPoincare (M:RING or TAGGED("Quotient")) :TAGGED("$hp.PSeries")

Description

Same as “AffHilbertSeries” (VI-1.5 pg.158).
See Also: AffHilbert (VI-1.3 pg.158), AffHilbertSeries (VI-1.5 pg.158), Hilbert (VI-8.16 pg.231), Hilbert-
Series (VI-8.20 pg.232)

VI-1.7 Alias

Aljas B_1,..., B_r

syntax

where each B_i is a ‘‘{\it binding}’’ of the form: Identifier := $PackageName

Description

This function is for declaring both global and local aliases for package names. Recall that package names are
meant to be long in order to avoid conflicts between the names of functions that are read into a CoCoA session.
However, it is inconvenient to have to type out the long package name when referencing a function. So the user
chooses an alias to take the place of the package name; the alias is just a means to avoid typing. Aliases for
packages that are routinely loaded, may be added to “userinit.coc” (see “User Initialization” (V-3.1 pg.149)).

1. Global aliases. To avoid typing the full package name as a prefix to package functions, one may declare
a short global alias during a CoCoA session. A list of the global aliases is produced by the function “Aliases”
(VI-1.9 pg.160). For examples, see the chapter on packages in the manual, in particular the section, “Global
Aliases” (I11-9.5 pg.73). Online, enter “?global aliases”.

2. Local aliases. A local alias has the same syntax as a global alias, however it appears inside a package
definition. The local aliases work only inside the package and do not conflict with any global aliases already
defined. In fact, in order to avoid conflicts, global aliases are not recognized within a package. For examples,
again look in the chapter for packages.

example
Alias LL := $abcd;
Aliases();
H = $help
10 = $io
GB = $gb
HP = $hp
HL = $hilop
List = $list
Mat = $mat
Latex = $latex
LaTeX = $latex
Toric = $toric

160

Coclib = $coclib

Chapter VI-1. A

See Also: Alias In (VI-1.8 pg.160), Aliases (VI-1.9 pg.160), Global Aliases (I11-9.5 pg.73), Introduction

to Packages (I11-9.1 pg.71), Local Aliases (I11-9.6 pg.74)

VI-1.8 Alias In

syntax

Alias B_1,...,B_r In C EndAlias

where each B_i is a ‘‘{\it binding}’’ of the form: Identifier
and C is a command sequence.

:= $PackageName,

Description

This command allows one to use the aliases defined by the “B_i"’s in the command sequence C without affecting

the global aliases.

example
Aliases(); -- the global aliases
H = $help
10 = $io
GB = $gb
HP = $hp
HL = $hilop
List = $list
Mat = $mat
Latex = $latex
LaTeX = $latex
Toric = $toric
Coclib = $coclib
Alias HP := $help In HP.Man("Alias In") EndAlias;
============ Alias In =============
SYNTAX
Aljas B_1,...,B_r In C EndAlias

where each B_i is a ‘‘{\it binding}’’ of the form: Identifier
and C is a command sequence.

---> Output suppressed <---
HP.Examples(); -- the global alias HP is unaffected

- STANDARD
Use R ::= Ql[t,x,y,2z];
Poincare(R);

---> Output suppressed <---

:= $PackageName,

See Also: Alias (VI-1.7 pg.159), Introduction to Packages (I11-9.1 pg.71)

VI-1.9 Aliases

syntax

Aliases() :TAGGED("Aliases")

VI-1.10. Append 161

Description

This function prints a list of global aliases for packages. Aliases are formed with the function “Alias” (VI-1.7
pg.159).

example
Aliases();
H = $help
10 = $io
GB = $gb
HP = $hp
HL = $hilop
List = $list
Mat = $mat

Latex = $latex
LaTeX = $latex
Toric = $toric
Coclib = $coclib

Alias TT := $abc;

Aliases();

H = $help
10 = $io

GB = $gb

HP = $hp

HL = $hilop
List = $list

Mat = $mat

Latex = $latex
LaTeX = $latex

Toric = $toric
Coclib = $coclib
TT = $abc

See Also: Alias (VI-1.7 pg.159), Introduction to Packages (I11-9.1 pg.71)

VI-1.10 Append

syntax
Append (V:LIST, E:0BJECT) :NULL
where V is a variable containing a list.
Description
This function appends the object E to the list V.
example
Use R ::= Q[t,x,y,z];
L := [1,2,3];
Append(L,4);
L;
[1 3 2 b 3 3 4]

See Also: Concat (VI-3.21 pg.178), ConcatLists (VI-3.22 pg.178), Insert (VI-9.16 pg.246), Remove (VI-
18.13 pg.321)

162 Chapter VI-1.

VI-1.11 Ascii

syntax
Ascii(N:INT) :STRING

Ascii(L:LIST of INT):STRING

Ascii(S:STRING) :LIST of INT

Description

In the first form, Ascii returns the character whose ascii code is N.
In the second form, Ascii returns the string whose characters, in order, have the ascii codes listed in L.
The third form is the inverse of the second: it returns the ascii codes of the characters in S.

example

Ascii(97);

[104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100]

Ascii(C);
hello world

Chapter VI-2

B

VI-2.1 BBasish

syntax
BBasis5(I:IDEAL) :LIST

Description

The function “BBasis5” calls the CoCoAServer to compute a Border Basis of zero dimensional ideal I.

example
Use Q[x, y], Deglex;

I := Ideal([x"2, xy + y21);

BBasis := BBasisb5(I);

See Also: GBasis5, and more (VI-7.18 pg.217)

VI-2.2 BettiDiagram

syntax

BettiDiagram(M:IDEAL or MODULE) : TAGGED("$gb.BettiDiagram")

Description
This function returns the (“Macaulay style”) Betti diagram for M.
example
Use R ::= Q[t,x,y,z];
I := Ideal(x"2-yt,xy-zt,xy);
Res(I);

0 --> R"2(-5) --> R"4(-4) --> R"3(-2)

BettiDiagram(I) ;
0 1 2
2: 3 -
3: -
Tot 3 4 2

Untagged (BettiDiagram(I)) ;
Record[Diagram = Mat ([

[3, 0, 0],

[0, 4, 2]
1), FirstShift = 2]

163

164 Chapter VI-2. B

See Also: Res (VI-18.15 pg.322), GB.GetBettiMatrix (VI-7.2 pg.211), BettiMatrix (VI-2.3 pg.164)

VI-2.3 BettiMatrix
syntax

BettiMatrix(M:IDEAL or MODULE) :TAGGED("$io.Matrix")

Description

This function returns the Betti matrix for M.

example

Use R ::= Q[t,x,y,2z];
I := Ideal(x"2-yt,xy-zt,xy);
Res(I);

0 -—> R"2(-5) --> R~4(-4) --> R"3(-2)

Untagged (BettiMatrix(I));

Mat ([
[0, o, ol,
[o, o, 31,
[0, o, ol,
[0, 4, o],
[2, 0, 0]
D

See Also: Res (VI-18.15 pg.322), GB.GetBettiMatrix (VI-7.2 pg.211), BettiDiagram (VI-2.2 pg.163)

VI-2.4 Bin

Bin(N:INT or POLY, K:INT):INT

syntax

Description

This function computes the binomial coefficient, “N choose K’ according to the formula
(N)(N-1)(N-2)...(N-K+1)/ K!
The same formula is used if N is a polynomial. The integer K cannot be negative.
example

Bin(4,2);

Bin(-4,3);
-20

VI-2.5. BinExp 165

Bin(x"2+2y,3);
1/6x76 + x4y - 1/2x74 + 2x72y"2 - 2x"2y + 4/3y"3 + 1/3x"2 - 2y"2 + 2/3y

See Also: BinExp (VI-2.5 pg.165), EvalBinExp (VI-5.8 pg.198)

VI-2.5 BinExp

syntax
BinExp(N:INT,K:INT) : TAGGED ("$binrepr.BinExp")
BinExp(N:INT,K:INT,Up:INT,Down:INT) : INT

where N and K are positive integers, and Up and Down are integers.

Description
This function computes the K-binomial expansion of N, i.e., the unique expression
N = Bin(N(K),K) + Bin(N(K-1),K-1) + ... + Bin(N(I),I)

where N(K) > ... > N(I) >= 1, for some I. The value returned is tagged for pretty printing.

It can also compute the sum of the binomial coefficients appearing in the K-binomial expansion of N after
replacing each summand Bin(N(J),J) by Bin(N(J)+Up,J+Down). It is useful in generalizations of Macaulay’s
theorem characterizing Hilbert functions.

example
BE := BinExp(13,4);

BE;

Bin(5,4) + Bin(4,3) + Bin(3,2) + Bin(1,1)
BinExp(13,4,1,1);

16

See Also: Bin (VI-2.4 pg.164), EvalBinExp (VI-5.8 pg.198)

VI-2.6 Block

Block C_1; ... ; C_n EndBlock;

syntax

where each C_i is a command.

Description

The “Block” command executes the commands as if they where one command. What this means in practice
is that CoCoA will not print a string of dashes after executing each “C_i”. Thus, “Block” is used on-the-fly
and not inside user-defined functions. (It has nothing to do with declaration of local variables, for instance, as
one might infer from some other computer languages.) The following example should make the use of “Block”

clear:
example

Print "hello "; Print "world";
hello

166 Chapter VI-2. B

Block Print "hello "; Print "world" EndBlock;
hello world
Block
PrintLn GCD([12,24,96]);
PrintLn LCM([12,24,961);
PrintLn GCD([x+y,x"2-y"2]1);
Print LCM([x+y,x"2-y"2]);
EndBlock;

VI-2.7 BlockMatrix

syntax

BlockMatrix(L:LIST) :MAT

where L is a list representing a block matrix.

Description

This function creates a block matrix. Each entry of the input list L has the form “[M_1,...,M_k]” where each
“M_1” is either: (i) a matrix (or list cast-able to a matrix) or (ii) the number 0, representing a zero matrix of
arbitrary size. The entry represents a row of a block matrix. For instance, if A, B, C, and D are matrices, then
BlockMatrix([[A,B,0],[C,0,D]]) will return a matrix of the form

| ABO |

| COoD|.
The obvious restrictions on the sizes of the matrices apply. In the above example, we would need the number

of rows in A and B to be the same. Similarly for C and D. The number of columns in A and C would need to
be the same.

example

[[1,2,3], [4,5,6]]1;
[[1,21, [3,41]1;
:= [[1,1,1], [2,2,2], [3,3,3]1];
:= [[4,4], [5,51, [6,6]];
BlockMatrix([[A,B,0], [C,0,D11);
Mat ([
[1, 2, 3, 1, 2, 0, 0],
(4, 5, 6, 3, 4, 0, 0],
[1, 1, 1, 0, 0, 4, 4],
2, 2,0, 0,5
3, 3,0,0,6

Dawe
T

[2’ s 5]:
[3, , 6]

See Also: MatConcatHor (VI-13.7 pg.276), MatConcatVer (VI-13.8 pg.277), DiagonalMat (VI-4.16
pg.190)

VI-2.8. Break 167

VI-2.8 Break

Break

syntax

Description

This command must be used inside a loop statement (“For”, “Foreach”, “Repeat”, or “While”). When
executed, the current loop statement is terminated and control passes to the command following the loop
statement. Thus, in the case of nested loops “Break” does *not* break out of all loops back to the “top level’
(see “Return”).

example

For T := 5 To 1 Step -1 Do

For J := 1 To 100 Do

Print J, " ";
If J = I Then PrintLn; Break EndIf;

EndFor;
EndFor;
12345
1234
123
12
1

See Also: Return (VI-18.19 pg.324)

VI-2.9 Bringln

syntax

BringIn(E:0BJECT) : 0BJECT
where E
is a polynomial, a rational function, or a list/matrix/vector of
these.

Description

This function maps a polynomial or rational function (or a list, matrix, or vector of these) into the current ring,
preserving the names of the indeterminates. When mapping from a ring of finite characteristic to one of zero
characteristic then consistent choices of image for the coefficients are made (i.e. if two coefficients are equal
mod p then their images will be equal).

If the two polynomial rings differ only in characteristic then it is faster to use the functions “QzZp” (VI-17.3
pg.314), “ZPQ” (VI-25.1 pg.363).

This function does not work on ideals because “BringIn(Ideal(x-y, x+y))” into “R[x]” is ambiguous:
one might expect “Ideal(2x)”, whereas just mapping the generators would return an error. So, if you want to
map the generators of the ideal type “Ideal (BringIn(Gens(I)))”.

example
RR ::= Q[x[1..4],z,y];
SS ::=Z/(101) [z,y,x[1..2]];
Use RR;
F := (x[1]-y-2)"2;
F;

x[1]1°2 - 2x[1]z + 272 - 2x[1]y + 2zy + y~2

Use R ::= Qlx,y,2];
F := 1/2%x"3 + 34/567*x*y*z - 890; -- a poly with rational coefficients
Use S ::= Z/(101) [x,y,2];
QZP(F) = BringIn(F);
TRUE

Chapter VI-2. B

See Also: Image (VI-9.9 pg.242), QZP (VI-17.3 pg.314), ZPQ (VI-25.1 pg.363)

Chapter VI-3

C

VI-3.1 Call
syntax
Call(F:FUNCTION,X_1,...,X_n):0BJECT
where X_1,...,X_n are the arguments for the function F.
Description
This function applies the function F to the arguments “X_1,...X_n".
example

The following function MyMax takes a function LessThan as parameter,
and returns the maximum of X and Y w.r.t. the ordering defined by the
function LessThan.

Define MyMax(LessThan,X,Y)
If Call(LessThan,X,Y) Then Return Y Else Return X EndIf
EndDefine;

Let’s use MyMax by giving two different orderings.
Define LT_Standard(X,Y)
Return X < V;
EndDefine;
Define LT_First(X,Y)
Return TRUE;
EndDefine;

MyMax (Function("LT_Standard"),3,5);

See Also: Function (VI-6.16 pg.208)

169

170 Chapter VI-3. C

VI-3.2 CartesianProduct, CartesianProductList

syntax

L.1> ... >1Lmnn

where each L_i is a list.

Description

This command returns the list whose elements form the Cartesian product of L1, ..., L,.
For the N-fold product of a list with itself, one may use “Tuples” (VI-20.8 pg.348).

example
L1 := [1,2,3];
L2 := ["a","b"];
L1 >< L2 >< [5]; -- same as
CartesianProduct (L1, L2, [5]); -- same as
CartesianProductList ([L1, L2, [5]]); -- this takes a lists of lists

[[1’ Ilall’ 5] , [1’ Ilbll’ 5] , [2’ llall, 5] s [2’ Ilbll’ 5] , [3’ Ilall, 5] , [3, ll'bll’ 5]]

ChessBoard := (1..8)><(1..8); —-- Need brackets around 1..8 otherwise
-- we get a parse error.

Note that only “<>” is used for “not equal” in CoCoA.
See Also: CoCoA Operators (I1I-3.1 pg.51), Tuples (VI-20.8 pg.348), Shortcuts (VI-0.1 pg.155)

VI-3.3 Cast

Cast (E:0BJECT,T:TYPE) : TYPE

syntax

Description

This function returns the value of the expression E after converting it to type T. If S and T are types with S j

T, then casting from S to T is usually possible.
example

L := [[1,2],[3,4]1];
Type (L) ;
LIST
Cast (L,MAT);
Mat ([
(1, 21,
[3, 4]

L; -- L is unchanged; it is still a list.

(f1, 21, [3, 41]

Use Z/(5) [t];

A := 8;

A; -- A has type INT
8

Cast(A,POLY); -- cast as a polynomial, A = -2 since the coefficient
-- ring is Z/5Z

VI-3.4. Catch 171

See Also: Data Types (I11-2.6 pg.48), Shape (VI-19.7 pg.332), Type (VI-20.9 pg.349), Types (VI-20.11
pg-350)

VI-3.4 Catch

Catch C EndCatch;
Catch C In E EndCatch;

syntax

where C is a sequence of commands and E is a variable identifier.

Description

Usually, when an error occurs during the execution of a command, the error is automatically propagated out of
the nesting of the evaluation. This can be prevented with the use of “Catch”.

If an error occurs during the execution of C, then it is captured by the command “Catch” and (in the second
form) assigned to the variable E. If no error occurs, then E will contain the value “Null”. Note the use of the
function “GetErrMesg” (VI-7.28 pg.223) in the example below.

IMPORTANT NOTE: There is a bug in “Catch”. Any “Return” command used inside “Catch” must return
some value. If not, the “Return” command will just return from the Catch-EndCatch statement; it will not
return from the function within which the statement is embedded. There is an example below.
example

Define Test(N)

Catch

PrintLn(1/N);

In E EndCatch;

If Type(E) = ERROR Then Print("An error occurred: ", GetErrMesg(E)) EndIf;
EndDefine;
Test(3);
1/3

Test (0);

An error occurred: Division by zero

—--Illustration of the BUG --
Define Test2()
Catch
Print("Hello ");
Return; -- incorrect: no value is returned
EndCatch;
PrintLn("world.");
EndDefine;
Test2();
Hello world.

Define Test3()
Catch
Print("Hello ");
Return 3; -- correct a value is returned
EndCatch;
PrintLn("world.");
EndDefine;
Test3();

172 Chapter VI-3.

Hello 3

See Also: Error (VI-5.6 pg.197), GetErrMesg (VI-7.28 pg.223)

VI-3.5 CFApprox

syntax

CFApprox (X:RAT, Prec:RAT): RAT

Description

CFApprox finds the “simplest” rational approximation within a maximum specified relative error.
example

CFApprox(1.414213, 10°(-2));
17/12

See Also: CFApproximants (VI-3.6 pg.172), ContFrac (VI-3.24 pg.179)

VI-3.6 CFApproximants

syntax

CFApproximants (X:RAT): LIST of INT and RAT

Description

CFApproximants returns a list of all continued fraction approximants to a specified rational
example

CFApproximants(1.414213);

(1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 816/577, 1393/985,
6388/4517, 7781/5502, 14169/10019, 21950/15521, 36119/25540, 58069/41061,
152257/107662, 210326/148723, 1414213/1000000]

See Also: CFApprox (VI-3.5 pg.172), ContFrac (VI-3.24 pg.179)

VI-3.7 Characteristic

syntax

Characteristic() :INT
Characteristic(R:RING) : INT

Description

This function returns the characteristic of the current ring, in the first case, or of the ring R, in the second.

example
Use R ::= Z/(3) [t];
S ::= Qlx,yl;
Characteristic(); -- characteristic of the current ring, R
3
Characteristic(8);

VI-3.8. Ciao 173

VI-3.8 Ciao

syntax
Ciao

Description

This command is used to quit CoCoA. Note, it is issued as follows:
“Ciao;”
without parentheses.
See Also: Quit (VI-17.1 pg.313)

VI-3.9 C(Clear

syntax

Clear
Clear R_1,...,R_n

where the R_i are identifiers for rings.

Description

The first form clears the working memory, i.e, all non-global variables. In the second form, the command clears
the global variables bound to the rings “R_1,...,R_n", i.e., the “ring-bound’” memory for these rings. For more
information on memory in CoCoA, see the chapter entitled “Memory Management” (I11-8 pg.67).

The contents of the working memory are listed by the command “Memory ()”, and the global variables bound
to the ring R are listed by the command “Memory(R)”.

example
Use R ::= Q[x,y,z];
I := Ideal(x,y); -- I is added to the working memory
MEMORY.X := 3; -- a global variable
ENV.R.X := Ideal(x); -- a global variable bound to the ring R
-- note that "ENV" is equivalent to "MEMORY.ENV"
Use S ::= Q[a,b];
ENV.S.Y := Ideal(a”2); -- global variable bound to S
J := Ideal(a,b); -- J is added to the working memory
Z :=4; -- Z7Z is added to the working memory
Memory(); -- the contents of the working memory

["I", an, "UserInitFile", nzn]

Memory(R); -- the global variables bound to R
[llel]

Memory(S); -- the global variables bound to S
[IIYIl]

Clear; -- clear the working memory

Memory () ;

L]

Clear R; -- clear the global variables bound to R
Memory (R) ;

L]

Memory (S) ;

[lIYIl]

174 Chapter VI-3. C

ENV.S.Y; -- this variable was never cleared
Ideal(a~2)

See Also: Delete (VI-4.8 pg.185), Destroy (VI-4.14 pg.189), Memory (VI-13.11 pg.279), Memory Man-
agement (ITI-8 pg.67)

VI-3.10 ClearDenom

ClearDenom(F:POLY) : POLY

syntax

Description

This function clears the denominators of the coefficients in a polynomial over Q. It simply multiplies by the
least common multiple of the denominators.

example
Use Qlx,y];
F := (2/3)*x + (4/5)*y;
ClearDenom(F) ;
VI-3.11 Close
syntax
Close(D:DEVICE)
Description
This function closes the device D.
example
D := OpenOFile("my-test"); -- open file for output from CoCoA
Print "test" On D; -- write to my-file
Close(D); -- close the file
Close(DEV.STDIN); -- close the standard input device
-- Bye
(Close(DEV.0UT) suppresses all output to the CoCoA window.)

See Also: Introduction to IO (IT1-7.1 pg.61)

VI-3.12 CloseLog

syntax

CloseLog(D:DEVICE) :NULL

Description

This function “OpenLog” (VI-15.3 pg.300) opens the output device D and starts to record the output from a
CoCoA session on D.

This function closes the device D and stops recording the CoCoA session on D.

See Also: OpenLog (VI-15.3 pg.300)

VI-3.13 CocoalLimits

CocoalLimits () :RECORD

syntax

VI-3.14. CocoaPackagePath 175

Description

This function returns the maximum allowable characteristic of a CoCoA ring and the maximum allowable
exponent in a CoCoA expression. These numbers may vary depending on the platform on which CoCoA is run.
example

Cocoalimits();
Record[MaxChar = 32767, MaxExp = 2147483647]

VI-3.14 CocoaPackagePath

syntax

CocoaPackagePath() : STRING

Description

This function returns the path name of the directory containing the CoCoA libraries. It is platform dependent.

example
CocoaPackagePath() ;
/usr/local/lib/cocoa-4.7/packages
VI-3.15 Coefficients
syntax

Coefficients(F:POLY or VECTOR):LIST
Coefficients(F:POLY,X:INDET) :LIST
Coefficients(F:POLY,S:LIST) :LIST

Description

This function returns the coefficients of F. In the first form, a list of the (non-zero) coefficients is returned; the
order being decreasing on the terms in F as determined by the term-ordering of the ring to which F belongs.
In the second form, the function views F as a polynomial in X, and returns a list of coefficients which are
polynomials in the remaining variables; their order is decreasing in powers of X, and a zero value is given for
those powers of X absent from F.
In the third form, the coefficients of the specified terms are returned; their order is determined by the list S.

example
Use R ::= Q[x,y,z];

F := 3x"2y+by~3-xy~5;

Coefficients(F);

[-1, 3, 5]

ScalarProduct (Coefficients(F), Support(F))
TRUE

V := Vector(3x~2+y, x-5z"3);
Coefficients(V);

[_5: 3: 1’ 1]

ScalarProduct (Coefficients(V), Support(V))
TRUE

]}
B

]
<

Coefficients(x~3z+xy+xz+y+2z, x);
[z, 0, y + z, y+ 2z]

176 Chapter VI-3. C

F := (1+2*x+3%y~4+5%z76) "7 ;

Skeleton := [1, x73, y~12, z"19, x"2xy~8*z"12];
Coefficients(F, Skeleton);

[1, 280, 945, 0, 567000]

See Also: Coefficient Rings (IV-8.3 pg.104), LC (VI-12.3 pg.264), Monomials (VI-13.21 pg.283), Support
(VI-19.25 pg.341)

VI-3.16 CoeffOfTerm

Coeff0fTerm(T:POLY,F:POLY) :C
Coeff0fTerm(T:VECTOR,F:VECTOR) :C

syntax

where T is a term (no coefficient) and C is one of INT, RAT, or ZMOD.

Description

This function returns the coefficient of the term T occurring in F.
example

Use R ::= Qlx,y,z];
F := bxy~2-3z"3;
Coeff0fTerm(xy~2,F);

See Also: Coefficients (VI-3.15 pg.175), LC (VI-12.3 pg.264), Log (VI-12.12 pg.269), LogToTerm (VI-
12.13 pg.269), Monomials (VI-13.21 pg.283), Support (VI-19.25 pg.341)

VI-3.17 Colon

Colon(M:IDEAL,N:IDEAL) : IDEAL
Colon(M:MODULE,N:MODULE) : IDEAL

syntax

Description

This function returns the quotient of M by N: the ideal of all polynomials F such that F*G is in M for all G in
N. The command “M : N” is a shortcut for “Colon(M,N)”.
See also “HColon” (VI-8.12 pg.228) for non-homogeneous input.

example
Use R ::= Q[x,y];
Ideal(xy,x"2) : Ideal(x);
Ideal(y, x)

Colon(Ideal(x"2,xy), Ideal(x,x-y"2));

VI-3.18. ColumnVectors 177

Ideal(x)

See Also: Saturation (VI-19.1 pg.329), HSaturation (VI-8.26 pg.235), HColon (VI-8.12 pg.228), Shortcuts
(VI-0.1 pg.155)

VI-3.18 ColumnVectors
syntax

ColumnVectors (M:LIST or MAT):LIST of VECTOR

where if M is a list, is must be cast-able as a matrix.

Description
This function returns the list of column vectors of the matrix M.
example
Use R ::= Q[x,y];
M := Mat([[1,1], [x,y],[x"2,y"2]1]);
M;
Mat ([
[1, 11,
[x, yl,
[x"2, y~2]
»
ColumnVectors (M) ;
[Vector(1l, x, x72), Vector(l, y, y~2)]
VI-3.19 Comp
syntax
Comp(E:LIST, RECORD, STRING, or VECTOR,X_1:INT,...,X_k:INT):0BJECT

Description

This function returns “E[X_1,...,X_k]” except in the case where there are no additional arguments
“X_1,...,X_k”, in which case E, itself, is returned (in other words “Comp(E)” returns E). Since the square
bracket notation works only for variables and indeterminates, this function must be used in all other situations
(e.g. directly indexing into, or selecting from, the result of a function call).

example
Use R ::= Q[x,y,z];

L := [4,5, [6,7])8];
Comp(L,1);

6, 71

F(X):=[X,X"2]; -- the following usage of "Comp" is useful for
—-- programming
F(2);

178 Chapter VI-3.

4

Struct := Record[L := [x,y,z], S := "string"];
Struct["L",3]; -- "Comp" works for records also
z

VI-3.20 Comps

syntax

Comps (V:VECTOR) : LIST

Description

This function returns the list of components of V. It is the same as Cast(V,LIST).

example

Use R ::= Qlx,y];
Comps (Vector (x,x+y,x+y"2));
[x, x+y, y72 + x]

See Also: Comp (VI-3.19 pg.177), NumComps (VI-14.13 pg.292)

VI-3.21 Concat

syntax
Concat(L_1:LIST,...,L_n:LIST):LIST
Description
This function returns the list obtained by concatenating lists “L_1,...,L_n".
example

Concat([1,2,3],[4,51,[1,061);
[1’ 2’ 3, 4’ 5’ 6]

See Also: Concatenation (IV-3.2 pg.91), ConcatLists (VI-3.22 pg.178)

VI-3.22 ConcatLists

syntax
ConcatLists([L_1:LIST,...,L_n:LIST]):LIST

VI-3.23. Cond

Description

This function takes a list whose components are lists and returns the concatenation of these components.

179

example
L := [[1,2],["abc","def"],[3,4]1];

ConcatLists(L);

[1, 2, "abc", "def", 3, 4]

See Also: Concatenation (IV-3.2 pg.91), Concat (VI-3.21 pg.178)

VI-3.23 Cond

syntax
Cond B_1 Then E_1 EndCond
Cond B_1 Then E_1 Elsif B_2 Then E_2 Elsif ... EndCond
Cond B_1 Then E_1 Elsif B_2 Then E_2 Elsif ... Else E_r EndCond

Cond(B_1,E_1,B_2,E_2,...,E_r)

where the B_i’s are boolean expressions and the E_i’s are expressions.

Description

If B,, is the first in the sequence of B;’s to evaluate to TRUE, then F,, is returned. If none of the B;’s evaluates
to TRUE, then Null is returned. The construct, “Elsif B Then E’ can be repeated any number of times.

Note: be careful not to type “Elseif” by mistake (it has an extraneous “e”).

The difference between “Cond” and “If” is that “Cond” is an expression which may be assigned to a variable;
each of the E;’s is an expression, not a general sequence of commands (as their analogues in “If” might be).

example

Define Sign(A)

Return Cond A>0 Then 1 Elsif A=0 Then O Else -1 EndCond;
EndDefine;

Sign(3);

Define PrintSign(A)
Return Cond(A>0,"positive",A=0,"zero","negative") ;
EndDefine;
PrintSign(3);
positive

See Also: If (VI-9.7 pg.241)

VI-3.24 ContFrac

syntax

ContFrac (X:RAT) :LIST of INT

Description

ContFrac returns a list of the continued fraction “denominators” for a given rational number.

example

ContFrac(1.414213);
(1, 2,2,2,2,2,2,2,1,1,4,1, 1,1, 1,1, 2,1, 6]

See Also: CFApprox (VI-3.5 pg.172), CFApproximants (VI-3.6 pg.172)

180 Chapter VI-3. C

VI-3.25 Count

Count (L:LIST,E:0BJECT) : INT

syntax

Description

This function counts the number of occurrences of the object E in the list L.

example
L := [1,2,3,2,[2,3]];
Count(L,2);
2

See Also: Distrib (VI-4.20 pg.192), Len (VI-12.5 pg.265)

VI-3.26 CurrentRing

syntax

CurrentRing ()

Description

This function returns the current ring. The related command, “RingEnv” (VI-18.23 pg.326) returns the name
of the current ring.

example
Use R ::= Qlx,y];
Use S ::= Z/(3) [t];
CurrentRing() ;
Z/(3) [t]
Use R;
CurrentRing() ;
Qlx,yl

See Also: Ring (VI-18.22 pg.325), RingEnv (VI-18.23 pg.326), RingEnvs (VI-18.24 pg.327)

Chapter VI-4

D

VI-4.1 Dashes

Dashes ()

syntax

Description

This function returns a string of dashes:

example
Dashes(); 1+1;

See Also: Equals (VI-5.4 pg.196)

VI-4.2 Date

Date()

syntax

Description

This function returns the date.
example

Date();
Fri Jan 30 20:47:18 1998

VI-4.3 DecimalStr

DecimalStr (X:RAT) : STRING
DecimalStr(X:RAT, NumDigits:INT):STRING

syntax

Description

This function computes a decimal approximation with NumDigits decimal digits of a rational number (default
value is 3) and converts it into a string for printing. If the returned string presents less than NumDigits decimal
digits, then the string represents the exact value of the input.

181

182 Chapter VI-4. D

example

DecimalStr(1/3);

0.333

DecimalStr(1/3, 60);
0.33
DecimalStr(121/10);

12.1

See Also: FloatStr (VI-6.11 pg.205), MantissaAndExponent (VI-13.4 pg.275)

VI-4.4 Define
syntax

Define F(X_1,...,X_n) Help S:STRING; C EndDefine
F(X_1,...,X_n) :=E -- deprecated!

Define F(...) Help S:STRING; C EndDefine

where F is an identifier, C is a sequence of commands, the X_i’s are

formal parameters and E is an expression. The third form, which

literally includes the string °‘\verb&...&’’ is used for a variable number of
parameters. The optional ‘‘\verb&Help S&’’, where S is a string, may be added
to provide help for the user.

Description

1. INTRODUCTION. This command adds the user-defined function F to the library. The function F can be
called in the following way:

F(E_1,...,E_n)

where the “E_i”’s are expressions. The result of the evaluation of each expression “E_i” is assigned to the
respective formal parameter “X_i”, and the command sequence C is executed. If, during the execution of C,
a statement “Return E” is executed, then the result of the evaluation of E is the return-value of the function
F. If no “Return” command is executed, or “Return” is executed without argument, then the return-value is
“Null”.

example

Define Square(X)
Return X~2;
EndDefine;

Square(5) ;
25

2. SCOPE. Every variable defined or modified by the command sequence C is considered local to the function
unless the variable is global or relative to a “Var” parameter. For the use of global variables, see “Global
Memory” (I11-8.3 pg.68) or the example below. See “Var” to learn about calling a function “by reference”, i.e.
so that the function can change the value of an existing variable.

example

Define Example_1(L)
L :=L + 5;
Return L;

EndDefine;

L := 0;

VI-4.4. Define 183

Example_1(L);

Define Example_2(L) -- Example using a global variable.
MEMORY.X := L + 3;

EndDefine;

Example_2(10);

MEMORY . X;

13

3. VARIABLE NUMBER OF PARAMETERS. It is also possible to have a variable number of parameters
using the syntax

Define F(...) Help S:STRING; C EndDefine;

In this case the special variable ARGV will contain the list of the arguments passed to the function. (The
statement, “Help S;” is optional.)

example
Define Sum(...)
If Len(ARGV) = O Then Return Null; -- empty sum
Else
Sum := 0;
Foreach N In ARGV Do Sum := Sum+N EndForeach;
EndIf;
Return Sum;
EndDefine;
Sum(1,2,3,4,5);
15
Sum() ;
Null
4. SHORTCUT. The form “F(X_1,...,X_n) := E” is discouraged and may be discontinued in later versions
of CoCoA. If is shorthand for “Define F(X_1,...X_n) Return E EndDefine;”
example
F(X) := X~2;
F(5);
25

5. HELP. Inside a user-defined function, one may add the command:
Help S;

where S is a string. Then, when a user enters “Help("F")” where F is the identifier for the function, the string,
S, is printed.

example
Define Test(N)
Help "Usage: Test(N:INT):INT";
Return N;
EndDefine;
Help "Test";
Usage: Test(N:INT):INT

184 Chapter VI-4. D

6. DEFINING RINGS INSIDE FUNCTIONS. For information on this topic, please see the section of the
tutorial entitled, “Rings Inside User-Defined Functions” (II-2.18 pg.35)

See Also: An Overview of CoCoA Programming (III-1.1 pg.45), Introduction to User-Defined Func-
tions (I11-5.1 pg.57), Memory Management (III-8 pg.67), Return (VI-18.19 pg.324), Rings Inside User-Defined
Functions (I1I-2.18 pg.35), Var (VI-22.1 pg.355)

VI-4.5 Deg

syntax

Deg(F:POLY or VECTOR) :INT
Deg(F:POLY or VECTOR,X:INDET):INT

Description

The first form of this function returns the (weighted) degree of F. The second form returns the (un-weighted)
degree of the indeterminate X in F. In either case, if F is a vector, the maximum of the degrees of its components
is returned. (For the degree of a ring or quotient object, see “Multiplicity” (VI-13.24 pg.285).)

example
Use R ::= Q[x,y];
Deg(xy~2+y);
3

1

Use R ::= Qlx,y], Weights(2,3);
Deg(xy~2+y);

8

See Also: MDeg (VI-13.10 pg.278), Weights Modifier (IV-8.5 pg.105)

VI-4.6 DeglLexMat

syntax

DeglexMat (N: INTEGER) : MAT

Description

This function return the matrix defining a standard term-ordering.

example
DeglLexMat (3) ;
Mat ([

[1, 1, 11,

[1, 0, 0],

[0, 1, 0]

VI-4.7. DegRevLexMat 185

See Also: Ord (VI-15.8 pg.302), Orderings (IV-8.6 pg.106), DegRevLexMat (VI-4.7 pg.185), LexMat
(VI-12.6 pg.266), RevLexMat (VI-18.21 pg.325), XelMat (VI-24.1 pg.361)

VI-4.7 DegRevLexMat

syntax
DegRevLexMat (N: INTEGER) :MAT

Description

This function return the matrix defining a standard term-ordering.

example

DegRevLexMat (3) ;
Mat ([
[1, 1, 11,
[0, o, -11,
[0, -1, 0]

See Also: Ord (VI-15.8 pg.302), Orderings (IV-8.6 pg.106), DegLexMat (VI-4.6 pg.184), LexMat (VI-12.6
pg.266), RevLexMat (VI-18.21 pg.325), XelMat (VI-24.1 pg.361)

VI-4.8 Delete

Delete V_1, ..., V_n

syntax

where each V_i is the identifier of a variable in the working
memory.

Description

This function removes variables from the working memory. It will not delete global variables. For more
information about memory in CoCoA, see the chapter entitled “Memory Management” (I1I-8 pg.67). The
command “Memory()” lists the contents of the working memory.

example
Use R ::= Qlx,y,z];
X := Ideal(x,y);
Y := 3;
Use S ::= Q[a,b];
Z := a"2+b"2;
Memory(); -- the contents of the working memory
[rxe, "y, "z"]
Delete X;
Memory(); -- X has been deleted from the working memory
(v1e", "y", "z"]

See Also: Clear (VI-3.9 pg.173), Destroy (VI-4.14 pg.189), Memory (VI-13.11 pg.279), Memory Manage-
ment (ITI-8 pg.67)

186 Chapter VI-4. D

VI-4.9 Den

Den(N:INT or RAT):INT
Den(N:POLY or RATFUN) :POLY

syntax

Description

These functions return the numerator and denominator of N. The numerator and denominator can also be found
using “.Num” and “.Den” (fragile).

example

Xty

See Also: Numerators and Denominators for Rational Functions (IV-10.2 pg.117), Numerators and
Denominators for Rational Numbers (IV-2.3 pg.87), Num (VI-14.12 pg.292)

VI-4.10 DensePoly

syntax

DensePoly(N:INT) :POLY

Description

This function returns the sum of all power-products of degree N.

example

Use R ::= Qlx,y];

DensePoly(3);

x"3 + x"2y + xy"2 + y~3

Use R ::= Q[x,y],Weights(2,3); -- <--- NOTE
DensePoly(1);

DensePoly(6) ;
x"3 + y 2

See Also: Randomize (VI-18.4 pg.316), Randomized (VI-18.5 pg.317)

VI-4.11 Depth

syntax
Depth(I: IDEAL, M: Tagged("Quotient")): INT
Depth(M: Tagged("Quotient"): INT

VI-4.11. Depth 187

Description

This function calculates the depth of M in the ideal I, i.e. the length of a maximal I-regular sequence in M. In
the second form, where I is not specified, it assumes that I is the maximal ideal generated by the indeterminates,
i.e. “Ideal(Indets())”.

Note that if M is homogeneous and I is the maximal ideal, then it uses the Auslander-Buchsbaum formula

depth_I(M) = N - pd(M)

where N is the number of indeterminates and pd is the projective dimension, otherwise it returns
“min{N | Ext"N(R/I,M)<>0}" using the function “Ext” (VI-5.10 pg.199).
example

Use R ::= Q[x,y,z];
Depth(Ideal(1)); -- the (x,y,z)-depth of the entire ring is 3

I := Ideal(x"5,y73,272);

—-- one can check that it is zerodimensional and CM this way
Dim(R/I);

Depth(R/I);

N := Module([x"2,y], [x+z,0]);
Depth(I,R"2/N); --- a max reg sequence would be (z72,y"3)

Use R ::= Qlx,y,z,t,u,v];

N := Module([x,y]l,[-y,x],[z,t],[-t,z], [u,v], [-v,ul);
-- Cauchy-Riemann system in three complex vars!

--- is it CM?

Depth(R"2/N) ;

Dim(R"2/N);

M := Module([x,y,z],[t,v,ul);
Res(R"3/M);
0 -—> R"2(-1) --> R"3

See Also: Res (VI-18.15 pg.322), Ext (VI-5.10 pg.199)

188 Chapter VI-4. D

VI-4.12 Der

Der (F,X:INDET) :POLY

syntax

where F is a polynomial or a rational function.

Description

This function returns the derivative of F with respect to the indeterminate X.

example

Use R ::= Qlx,y];

Der(xy~2,x);

y°2

Define Jac(F) --> The Jacobian matrix for a polynomial.
Return Mat([[Der(F,X) | X In Indets()]11);

EndDefine;

Jac(xy~2);

Mat ([
[y~2, 2xy]

Der (x/(x+y) ,x);
y/(x°2 + 2xy + y~2)

See Also: Jacobian (VI-10.1 pg.259)

VI-4.13 Describe

Describe (E:0BJECT)
Describe E:0BJECT

syntax

Description

This command gives information about the expression E.

example

Use R ::= Z/(32003) [t,x,y];
I := Ideal(t"3-x,t"4-y);
G := Syz0fGens(I);
Print I;
Ideal(t"3 - x, t74 - y)
Describe I;
Record[Type = IDEAL, Value = Record[Gens = [t"3 - x, t74 - y],
Syz0fGens = Module([-t"4 + y, t°3 - x], [t74x - xy, -t"3x + x"2])]1]
Describe Function("$mat.Transposed");
Define Transposed(M)
If NOT(Type(M) = MAT) Then
Error("Transposed: argument must be a matrix");
EndIf;
Return(Mat ([
J,
1..Len(M[1]),

VI-4.14. Destroy

TRUE,
[M[IJ[JIII In 1..Len(M)]
1;
EndDefine;

189

See Also: Other Help (V-2.4 pg.146)

VI-4.14 Destroy

syntax

Destroy R_1, ... , R.n

where each R_i is the identifier of a ring.

Description

This command clears all global variables bound to the listed rings. Moreover, if R is a ring in the list and there
are no variables in the current memory dependent upon R, then the ring identified by R is deleted; otherwise R
is renamed with a name of the form “R#N” where N is an integer. This renamed ring is automatically removed

as soon as the last variable dependent upon it is deleted.
The command will not work if one of the listed rings is the current ring.

For more information about memory in CoCoA, see the chapter entitled “Memory Management” (III-8

pg.67).
example
Use R ::= Qlx,y,z];
X := 3;
I := Ideal(x,y); -- dependent on R
ENV.R.Y := 5; -- in global memory bound to R
Use S ::= Q[a,b];
Destroy R;
RingEnvs(); -- R#1 created to hold because of the ideal I
Q", "Qt", "R#1", "s", "z"]
Memory(); -- ENV.R.Y was destroyed along with R
(v, "It", "X"]
I; -- I was not destroyed
R#1 :: Ideal(x, y)
I :=3; -- overwrite I; it is no longer dependent on a CoCoA ring
Describe Memory();
———————————— [Memory] -——--------
I=23
It = R#1 :: Ideal(x, y)
X=3
RingEnvs(); -- subtle point here: the variable "It" is still dependent
-- on R#1
[HQII, lthll’ IlR#lll’ IISII’ llle]
RingEnvs(); -- However, the previous command caused It to become a

-- string; hence, R#1 disappears.
[IIQII, “Qt", IISII, IIZIl]

See Also: Clear (VI-3.9 pg.173), Delete (VI-4.8 pg.185), Memory Management (I11-8 pg.67)

190 Chapter VI-4. D

VI-4.15 Det

Det (M:MAT)

syntax

the resulting type depends on the entries of the matrix.

Description

This function returns the determinant of the matrix M. The resulting type depends on the types of the entries
of the matrix.

example

Use R ::= Q[x];

M := Mat([[x,x"2], [x,x~3]1]);
Det (M) ;

x"4 - x73

See Also: Minors (VI-13.15 pg.281)

VI-4.16 DiagonalMat

syntax

DiagonalMat (L:LIST) :MAT

Description

This function return the diagonal matrix whose diagonal are the elements of the list L.

example
DiagonalMat ([3,4,5]);
Mat ([

(3, o, 01,

[0, 4, ol,

[0, 0, 5]

-- fast implementation for high powers of a diagonal matrix

Define PowerDiag(M, Exp)
If Not IsDiagonal(M) Then Error("PowerDiag: matrix must be diagonal"); EndIf;
Return DiagonalMat([M[I,I]"Exp | I In 1..Len(M) 1);

EndDefine;

PowerDiag(Identity(3), 200000000) ;
Mat ([

[1, o, 01,

[o, 1, 01,

[0, o0, 1]

See Also: BlockMatrix (VI-2.7 pg.166), IsDiagonal (VI-9.26 pg.251)

VI-4.17. Diff 191

VI-4.17 Diff

Diff (L:LIST,M:LIST):LIST

syntax

Description

This function returns the list obtained by removing all the elements of M from L.
example

L := [1,2,3,2,[2,3]];
M= [1,2];
Diff (L,M);
[3, [2, 311

See Also: Insert (VI-9.16 pg.246), Remove (VI-18.13 pg.321)

VI-4.18 Dim

Dim(R:RING or TAGGED("Quotient")) :INT

syntax

Description

This function computes the dimension of R. The weights of the indeterminates of the polynomial ring must all
be 1.
The coefficient ring must be a field.

example
Use R ::= Qlx,y,z];
Dim(R/Ideal(0));
3
Dim(R/Ideal(y~2-x,xz-y"3));
1
VI-4.19 Discriminant
syntax

Discriminant (F:POLY) :POLY
Discriminant (F:POLY, X:INDET):POLY

Description

This function computes the discriminant of a polynomial F (with respect to a given indeterminate X, if the
polynomial is multivariate). If the polynomial is univariate then there is no need to specify which indeterminate
to use.

The discriminant is defined to be the resultant of F and its derivative with respect to X.

example
Use R ::= Qlx,y];
Discriminant (x"2+3y~2, x);
12y°2

Discriminant (x"2+3y~2, y);
36x72

Discriminant ((x+1) "20+2);

192 Chapter VI-4. D

54975581388800000000000000000000

See Also: Resultant (VI-18.18 pg.324)

VI-4.20 Distrib

syntax

Distrib(L:LIST):LIST

Description

For each object E of a list L, let N(E) be the number of times E occurs as a component of L. Then Distrib(L)
returns the list whose components are [E,N(E)].

example
Distrib(["b","a","b",4,4,[1,2]]);
tf'o", 21, ["a", 11, [4, 2], [[1, 2], 1]]
See Also: Count (VI-3.25 pg.180)
VI-4.21 Div
syntax
Div(N:INT,D:INT):INT

Description

IfN=Q*D + R, and 0 < R < |D|, then “Div(N,D)” returns Q and “Mod(N,D)” returns R.

NOTE: To perform the division algorithm on a polynomial or vector, use “NR” (VI-14.11 pg.291) (normal
remainder) to find the remainder, or “DivAlg” (VI-4.22 pg.192) to get both the quotients and the remainder.
To determine if a polynomial is in a given ideal or a vector is in a given module, use “NF” (VI-14.7 pg.290)

or “IsIn” (VI-9.29 pg.252), and to find a representation in terms of the generators use “GenRepr” (VI-7.24
pg.221).

example

Div(10,3);

See Also: DivAlg (VI-4.22 pg.192), GenRepr (VI-7.24 pg.221), NF (VI-14.7 pg.290), NR (VI-14.11
pg.291), Mod (VI-13.17 pg.281)

VI-4.22 DivAlg

syntax

DivAlg(X:POLY,L:LIST of POLY):RECORD
DivAlg(X:VECTOR,L:LIST of VECTOR) :RECORD

VI-4.22. DivAlg

Description

193

This function performs the division algorithm on X with respect to L. It returns a record with two fields:
“Quotients” holding a list of polynomials, and “Remainder” holding the remainder of X upon division by L.

example

Use R ::= Q[x,y,z];

F 1= x"2y+xy~2+y~2;

L := [xy-1,y"2-1];

DivAlg(F, [xy-1,y"2-11);

Record[Quotients = [x + y, 1], Remainder = x + y + 1]
D := It;

D.Quotients;

x +y, 1]

D.Remainder;

x+y+1

ScalarProduct(D.Quotients,L) + D.Remainder = F;
TRUE

=
i

Vector (x"2+y~2+z"2,xyz) ;
L := [Vector(x,y),Vector(y,z),Vector(z,x)];
DivAlg(V,L);

Record[Quotients = [0, -z"2, yz], Remainder = Vector(x"2 + y~"2 + z"2, z73)]

See Also: Div (VI-4.21 pg.192), Mod (VI-13.17 pg.281), GenRepr (VI-7.24 pg.221), NF (VI-14.7 pg.290),

NR (VI-14.11 pg.291)

194 Chapter VI-4. D

Chapter VI-5

E

VI-5.1 E_

syntax

E_(K:INT,N:INT or MODULE):VECTOR

Description

If N is an integer, this function returns the K-th canonical vector of the free module of rank N over the current
ring. If N is a module, it returns the K-th canonical vector of N.

example
Use R ::= Q[x,y];
E_(4,7);
Vector(0, 0, 0, 1, 0, 0, 0)
M := Module([x°2,0,y°2],[x"3,x+y,y"3]);
E_(2,M);
Vector(0, 1, 0)

VI-5.2 Elim
syntax

Elim(X:INDETS,M:IDEAL) : IDEAL
Elim(X:INDETS,M:MODULE) : MODULE

where X is an indeterminate or a list of indeterminates.

Description
This function returns the ideal or module obtained by eliminating the indeterminates X from M. The coefficient
ring needs to be a field.

As opposed to this function, there is also the *modifier*, “Elim”, used when constructing a ring (see
“Orderings” (IV-8.6 pg.106) and “Predefined Term-Orderings” (IV-8.7 pg.106)).

example

Use R ::= Q[t,x,y,z];
Set Indentation;
Elim(t,Ideal (£~ 15+t 6+t-x,t"5-y,t"3-2));
Ideal(
-z"5 + y~3,
-y"4 - yz'2 + xy - 272,
-xy"3z - y"2z"3 - xz"3 + X722 - y°2 -y,
-y~2z"4 - x"2y"3 - xy"2z72 - yz™4 - x72272 + x"3 - y"2z - 2yz - z,

195

196 Chapter VI-5. E

-y~3z"3 + xz2"3 - y°3 - y°2)

Use R ::= Q[t,s,x,y,z,w];

t..X;

(t, s, x]

Elim(t..x,Ideal (t-x"2zw,x"2-t,y"2t-w)); -- Note the use of t..x.

Ideal(-zw™2 + w)

Use R ::= Q[t[1..2],x[1..4]1];
I := Ideal(x[1]-t[1]1°4,x[2]-t[1]1"2t[2],x[3]-t[11t[2]"3,x[4]-t[2]"4);
t:

[t[1], t[2]1]

Elim(t,I); -— Note the use t.
Ideal(x[3]1°4 - x[11x[4]1"°3, x[2]"4 - x[1]"2x[4])

See Also: Orderings (IV-8.6 pg.106), Predefined Term-Orderings (IV-8.7 pg.106)

VI-5.3 EqgSet

syntax

EqSet (L:LIST,M:LIST) :BOOL

Description
This function returns TRUE if L equals M as sets, otherwise it returns FALSE.
example
L := [1,2,2];
M= [2,1];
EgSet (L,M);
TRUE

See Also: Intersection (VI-9.19 pg.248), IntersectionList (VI-9.20 pg.249), IsSubset (VI-9.39 pg.256)

VI-5.4 Equals

syntax
Equals()
Description
This function returns a string of equal signs:
example
Equals();
See Also: Dashes (VI-4.1 pg.181)
VI-5.5 EquilsoDec
syntax

EquiIsoDec(I:IDEAL):LIST of IDEAL

VI-5.6. Error 197

Description

This function computes an equidimensional isoradical decomposition of I, i.e. a list of unmixed ideals I, ..., [}
such that the radical of I is the intersection of the radicals of I, ..., I[. Redundancies are possible.

NOTE: at the moment, this implementation works only if the coefficient ring is the rationals or has large
enough characteristic.

example

Use R ::= Qlx,y,2];

I := Intersection(Ideal(x-1,y-1,z-1),Ideal(x-2,y-2)"2,Ideal(x)"3);

H := EquiIsoDec(I);

H;

[Tdeal(x), Ideal(z - 1, y - 1, x - 1), Ideal(xy - y"2 - 2x + 2y, x"2 -
y°2 -4x + 4y, y'2z - y°2 - 4yz + 4y + 4z - 4, y°3 - by"2 + 8y - 4, x
- 2)]

T := [Radical(J)|J In H];

S := IntersectionList(T);

Radical(I) = S;

TRUE

See Also: PrimaryDecomposition (VI-16.15 pg.310), Radical (VI-18.1 pg.315), RadicalOfUnmixed (VI-
18.2 pg.315)

VI-5.6 Error

syntax

Error (S:STRING) : ERROR

Description

This function returns an error labeled with the string S. To get S use “GetErrMesg” (VI-7.28 pg.223).

example
Define T(N)

If Type(N) <> INT Then Error("Argument must be an integer.") EndIf;
Return Mod(N,5);

EndDefine;

T(1/3);

ERROR: Argument must be an integer.
CONTEXT: Error("Argument must be an integer.")

See Also: Catch (VI-3.4 pg.171), GetErrMesg (VI-7.28 pg.223)

VI-5.7 Eval

syntax

Eval(E:0BJECT,L:LIST) :0BJECT

198 Chapter VI-5. E

Description

This function substitutes the N-th element of L for the N-th indeterminate of the current ring for all N less than
or equal to the minimum of the number of indeterminates of the current ring and the number of components of
L.

example

Use Q[x,y];
Eval(x~2+y,[2, 3]);

Eval(x~2+y, [2]1);

y+ 4

F := x(x-1) (x-2)y(y-1) (y-2)/36;
P := [1/2, -2/3];

Eval(F, P);

-5/162

Eval([x+y,x-y],[2,1]);

[3, 1]

Eval([x+y,x-yl, [x"2,y"2]);
[x"2 + y™2, x72 - y~2]
Eval([x+y,x-yl, [y]);

[2y, O]

See Also: Evaluation of Polynomials (IV-9.2 pg.114), Image (VI-9.9 pg.242), Subst (VI-19.23 pg.340),
Substitutions (II-2.15 pg.33)

VI-5.8 EvalBinExp

syntax
EvalBinExp(B:TAGGED("$binrepr.BinExp") ,Up:INT,Down:INT) : INT

where N and K are positive integers, and Up and Down are integers.

Description
The function “BinExp” (VI-2.5 pg.165) computes the K-binomial expansion of N, i.e., the unique expression
N = Bin(N(K),K) + Bin(N(K-1),K-1) + ... + Bin(N(I),I)

where N(K) > ... > N(I) >=1, for some L.

This function computes the sum of the binomial coefficients appearing in the K-binomial expansion of N after
replacing each summand Bin(N(J),J) by Bin(N(J)+Up,J+Down). It is useful in generalizations of Macaulay’s
theorem characterizing Hilbert functions.

It is the same as “BinExp” (VI-2.5 pg.165) with 4 arguments except it takes a precomputed binomial
expansion as an argument rather than N and K.

example
BE := BinExp(13,4);

BE;

Bin(5,4) + Bin(4,3) + Bin(3,2) + Bin(1,1)
EvalBinExp(BE,1,1);

16

VI-5.9. EvalHilbertFn 199

BinExp(13,4,1,1);
16

See Also: Bin (VI-2.4 pg.164), BinExp (VI-2.5 pg.165)

VI-5.9 EvalHilbertFn
syntax

EvalHilbertFn(H:TAGGED("$hp.Hilbert") ,N:INT) :INT

Description

This function evaluates the Hilbert function H at N. If H is the Hilbert function of a quotient R/I, then the
value returned is the same as that returned by “Hilbert(R/I,N)” but time is saved since the Hilbert function
does not need to be recalculated at each call.

example

Use R ::= Qlw,x,y,2];
I := Ideal(z"2-xy,xz"2+w"3);
H := Hilbert(R/I);

H;
H(O) =1
H(1) = 4

H(t) =6t -3 fort >= 2

See Also: Hilbert (VI-8.16 pg.231), HilbertFn (VI-8.18 pg.232), HilbertPoly (VI-8.19 pg.232)

VI-5.10 Ext
syntax

Ext(I:INT, M:TAGGED(Quotient), Q:TAGGED(Quotient)): TAGGED(Quotient)
Ext(I:LIST, M:TAGGED(Quotient), Q:TAGGED(Quotient)): TAGGED($ext.ExtList)

Description

In the first form the function computes the I-th Ext module of M and N. It returns a presentation of Exth (M, N)
as a quotient of a free module.

IMPORTANT: the only exception to the type of M or N (or even of the output) is when they are either a
zero module or a free module. In these cases their type is indeed MOD.

It computes Ext via a presentation of the quotient of the two modules Ker(Phixr) and Im(Phixr_1), where

- Phiy is the I-th map in the free resolution of M

- Phixy is the map Hom(Phiy, N) in the dual of the free resolution.

Main differences with the previous version include:

- SHIFTS have been removed, consequently only standard homogeneous modules and quotients are supported

- as a consequence of 1), the type “Tagged("Shifted")” has been removed. Ext will just be a
“Tagged ("Quotient")”

- The former functions Presentation(), HomPresentation() and KerPresentation() have been removed

- The algorithm uses Res() to compute the maps needed, and not SyzOfGens anylonger, believed to cause
troubles

200 Chapter VI-5. E

- The function “Ext” always has THREE variables, see syntax...

In the second form the variable I is a LIST of nonnegative integers. In this case the function Ext prints all
the Ext modules corresponding to the integers in I. The output is of special type “Tagged("$ext.ExtList")”
which is basically just the list of pairs (J, Ezt’ (M, N))|JinI in which the first element is an integer of I and
the second element is the correpsonding Ext module.

VERY IMPORTANT: CoCoA cannot accept the ring R as one of the inputs, so if you want to calculate the
module Exth(M, R) you need to type something like

“Ext(I, M, Ideal(1));”

or

“Ext (I, M, R"1);”

or

“Ext(I, M, R/Ideal(0));”

NOTE: The input is pretty flexible in terms of what you can use for M and N. For example they can be
zero modules or free modules. See some examples below.

example
Use R ::= Q[x,y,z];
I := Ideal(x"5,y73,z72);
Ideal(0) : (I);
Ideal(0)
$hom.Hom(R~1/Module(I), R~1); -- from Hom package
Module ([0])
Ext (0, R/I, R°1); --- all those things should be isomorphic
Module ([0])
Ext(0..4, R/I, R/Ideal(0)); -- another way to define the ring R as a quotient
Ext~0 = Module([0])
Ext~1 = Module([0])
Ext~2 = Module([0])
Ext"3 = R"1/Module([x~5], [-y~3], [z"2])
Ext~4 = Module([0])
N := Module([x"2,y], [x+z,0]);
Ext(0..4,R/I,R"2/N);
Ext~0 = Module([0])
Ext~1 = Module([0])
Ext~2 = R"8/Module([0, O, O, -1, O, O, O, O], (.....)
Ext~3 = R"2/Module([x~5, 0], [0, x°5], [-y~3, 0], [0, -y~3],
[z~2, 0], [0, z"2], [x"2, y], [x + z, 01)
Ext~4 = Module([0])

As you can see the Ext? is not presented minimally. The minimal presentation will be available in an
upcoming release of CoCoA.
See Also: Res (VI-18.15 pg.322), Depth (VI-4.11 pg.186)

Chapter VI-6

F

VI-6.1 Fact
syntax
Fact (N:INT) : INT
where N is a non-negative integer.
Description
This function returns N factorial.
example
Fact(5);
120
Fact(100);

9332621544394415268169923885626670049071596826438162146859
2963895217599993229915608941463976156518286253697920827223
758251185210916864000000000000000000000000

See Also: Bin (VI-2.4 pg.164)

VI-6.2 Factor

Factor (F:POLY) :LIST

syntax

Description

This function factors a polynomial in its ring of definition. Multivariate factorization is not yet supported over
finite fields. (For information about the algorithm, consult “Pointers to the Literature” (II-1.5 pg.24).)

The function returns a list of the form “[[F_1,N_11,...,[F_r,N_r]]” where “F_1"N_1 ... F_r"N_r = F”
and the “F_i” are irreducible in the polynomial ring of F.

example

Use R ::= Qlx,y];

F := x712 - 37x"11 + 608x"10 - 5852x"9 + 36642x"8 - 156786x"7 + 468752x"6
- 984128x"5 + 1437157x"4 - 1422337x"3 + 905880x~"2 - 333900x + 54000;

Factor (F) ;

[x -2, 1], [x -4, 1], [x -6, 1], [x -3, 2], [x -5, 3], [x -1, 4]]

G := Product([W[1]"W[2] | W In It]); -- check solution

F = G;

201

202 Chapter VI-6. F

Factor((8x"2+16x+8)/27); -- the "content" appears as a factor of degree 0;

-- it is not factorized into prime factors.
[lx+1, 2], [8/27, 1]]

Y e

Factor(F); -- multivariate factorization

[[x"2y + xy~2 + 3, 1], [x +y, 21]

Use Z/(37) [x];

Factor(x~6-1);

[[x -1, 1], x+1, 11, [x + 10, 11, [x + 11, 1], [x - 11, 1], [x - 10, 1]]
Factor(2x~2-4); -- over a finite field the factors are made monic;

-- leading coeff appears as '"content" if it is not 1.
[x~2 - 2, 1], [2, 1]]

VI1-6.3 FactorMultiplicity

syntax

FactorMultiplicity(N:INT, Fac:INT):INT

Description

This function counts how many times a give factor divides a given integer. Obviously Fac must not be -1, 0, or
1, and N must not be zero.

example
FactorMultiplicity(20, 2);
2
FactorMultiplicity(20, 10);
1
FactorMultiplicity(20, 7);
0
VI1-6.4 FGLMS5
syntax

FGLM5(GB01d:LIST, M:MAT):LIST

Description

The function “FGLM5” calls the CoCoAServer to perform a FGLM Groebner Basis conversion. The Groebner
Basis contained in list GBOId will be converted into a Groebner Basis with respect to term ordering “0Ord (M)”,
i.e. M must be a matrix specifying a term ordering.

example
Use Q[x, y, z], DegRevlex;
+y - zl;

GBOld := [z"4 -32"3 - 4yz + 2z"2 -y + 2z - 2, y2™2 + 2yz - 22"2 + 1, y"2 - 2yz + 22 - z,

VI-6.5. Fields 203

M := LexMat(3);

GBNew := FGLM5(GB0ld, M);
Use Qlx, y, z], Ord(M);
-- New basis (Lex)
BringIn(GBNew) ;

See Also: GBasis5, and more (VI-7.18 pg.217)

VI-6.5 Fields

syntax

Fields(P:RECORD) :LIST

Description

This function returns a list of all of the fields of the record P.
example
P := Record[Name = "David", Number = 3728852, Data = ["X","Y"] 1;
Fields(P);

["Data", "Name", "Number"]

P.Data;

["X", I|Y"]

See Also: Introduction to Records (IV-5.1 pg.97), Record (VI-18.9 pg.319)

VI-6.6 First

syntax
First(L:LIST) :0BJECT
First(L:LIST,N:INT):0BJECT

Description

In the first form, the function is the same as the function “Head” (VI-8.13 pg.229); it returns the first element
of the list L. In the second form, it returns the list of the first N elements of L.

example

L := [1,2,3,4,5];
First(L);

First(L,3);
(1, 2, 3]

See Also: Head (VI-8.13 pg.229), Last (VI-12.1 pg.263)

VI-6.7 FirstNonZero

syntax

FirstNonZero(V:VECTOR) : POLY

204 Chapter VI-6. F

Description

This function returns the first non-zero entry of V. If it is handed a zero vector then an error is signalled.
example

Use R ::= Qlx,y,2];

V := Vector(0,0,x"2+yz,0,2"2);
FirstNonZero (V) ;

x"2 + yz

See Also: NonZero (VI-14.9 pg.291), FirstNonZeroPos (VI-6.8 pg.204)

VI-6.8 FirstNonZeroPos

FirstNonZero(V:VECTOR) : POLY

syntax

Description

This function returns the index of the first non-zero entry of V. If it is handed a zero vector then an error is
signalled.

example
Use R ::= Q[x,y,z];

V := Vector(0,0,x"2+yz,0,z"2);

FirstNonZero(V);

X"2 + yz

V[FirstNonZeroPos (V)];
xX"2 + yz

See Also: NonZero (VI-14.9 pg.291), FirstNonZero (VI-6.7 pg.203)

VI-6.9 Flatten

Flatten(L:LIST):LIST
Flatten(L:LIST,N:INT):LIST

syntax

Description

Components of lists may be lists themselves, i.e., lists may be nested. With one argument this function returns
the list obtained from the list L by removing all nesting, bringing all elements “to the top level”. With the
optional second argument, N, nesting is removed down N levels. Thus, the elements of M := Flatten(L,1) are
formed as follows: go through the elements of L one at a time; if an elements is not a list, add it to M; if an
element is a list, add all of its elements to M. Recursively, Flatten(L,N) = Flatten(Flatten(L,N-1),1). For N
large, depending on L, Flatten(L,N) gives the same result as Flatten(L).

example
Flatten([1,["a","b",[2,3,4],"c","d"],5,6]1);

[1, "a", "b", 2, 3, 4, "c", "d", 5, 6]

L := [1,2, [3,4], [5, [6,7,[8,9111];
Flatten(L,1);

(1, 2, 3, 4, 5, [6, 7, [8, 91]1]

VI-6.10. FloatApprox 205

Flatten(It,1);

(1, 2, 3, 4, 5, 6, 7, [8, 9]]

Flatten(L,2); -- same as in the previous line
[1) 2’ 3, 4’ 5’ 6, 7’ [8’ 9]]

Flatten(L,3); -- same as Flatten(L)

[1, 2’ 33 4’ 5) 63 7’ 83 9]

VI-6.10 FloatApprox

syntax

FloatApprox (X:RAT, RelErr:RAT):RAT

Description

This function computes an approximation of the form M *10F to a rational number X and to within a maximum
specified relative error. RelErr says indirectly how many decimal digits to include in the mantissa. Compare
with “MantissaAndExponent” (VI-13.4 pg.275).

example

FloatApprox(1/3, 10°(-2));
333/1000

FloatApprox (1000000/3, 10~(-2));
333000

FloatApprox(1/3, 10°(-9));
3333333333/10000000000

See Also: DecimalStr (VI-4.3 pg.181), FloatStr (VI-6.11 pg.205), MantissaAndExponent (VI-13.4 pg.275)

VI-6.11 FloatStr

FloatStr (X:RAT) : STRING
FloatStr (X:RAT, Prec:INT):STRING

syntax

Description

These two functions convert a rational number X into a (decimal) floating point string. The optional second
argument Prec says how many decimal digits to include in the mantissa; the default value is 10. Note that an
exponent is always included; the only exception being the number zero which is converted to the string “0”.

example
FloatStr(2/3); -- last printed digit is rounded
6.666666667*10" (-1)
FloatStr(7°510); -- no arbitrary limit on exponent range
1.000000938%10°431
FloatStr(1/81, 50); -- precision of mantissa specified by user
1.2345679012345679012345679012345679012345679012346%107 (-2)
FloatStr(1/2); -- trailing zeroes are not suppressed

206 Chapter VI-6. F

5.000000000%10" (1)

See Also: DecimalStr (VI-4.3 pg.181), FloatApprox (VI-6.10 pg.205)

VI-6.12 For

For T := N_1 To N_2 Do C EndFor
For I := N_1 To N_2 Step D Do C EndFor

syntax

where I is a dummy variable, N_1, N_2, and D are integer expressions,
and C is a sequence of commands.

Description

In the first form, the variable I is assigned the values “N_1, N_1+1, ..., N_2” in succession. After each
assignment, the command sequence C is executed. The second form is the same, except that I is assigned
the values “N_1, N_1+D, N_1+2D”) etc. until the greatest value less than or equal to “N_2” is reached. If
“N_2 < N_17, then C is not executed.

Note: Large values for “N_1, N_2”, or D are not permitted; typically they should lie in the range about
—10° to +10°.

Note: Don’t forget the capitalization in the word “To”.

example
For N := 1 To 5 Do Print(2°N, " ") EndFor;
2 4 8 16 32
For N := 1 To 20 Step 3 Do Print(N, " ") EndFor;
147 10 13 16 19
For N := 10 To 1 Step -2 Do Print(N, " ") EndFor;
10 8 6 4 2
For N := 5 To 3 Do Print(N, " ") EndFor; -- no output
Loops can be nested.
example

Define Sort(Var(L))
For I := 1 To Len(L)-1 Do
M :=1;
For J := I+1 To Len(L) Do
If L[J] < L[M] Then M := J EndIf;

EndFor;
If M <> I Then
C := L[MI;
L[M] := L[I];
L[I] :=C
EndIf
EndFor
EndDefine;

M := [5,3,1,4,2];
Sort (M) ;

M;

[1, 2, 3, 4, 5]

VI-6.13. Foreach 207

(Note that “Var(L)” is used so that the function can change the value of the variable referenced by L. See
“Var” .)

See Also: Foreach (VI-6.13 pg.207), Repeat (VI-18.14 pg.321), While (VI-23.3 pg.358)

VI-6.13 Foreach

Foreach X In L Do C EndForeach

syntax

where X is a dummy variable, L is a list, and C is a sequence of commands.

Description

The dummy variable X is assigned the value of each component of L in turn. After each assignment the

command sequence C is executed. Note: don’t forget to capitalize “In”.

example

Foreach N In 1..10 Do -- Note: 1..10 gives the list [1,...,10].
Print(N~2, " ");

EndForeach;

149 16 25 36 49 64 81 100

Use R ::= Qlx,y,z];

F := x"2y + 3y™2z - z73;

J := [Der(F,X) | X In Indets()]; -- the Jacobian for F

J;

[2xy, x"2 + 6yz, 3y~2 - 3z"2]

Foreach X In J Do -- square each component of the Jacobian
PrintLn(X"2);

EndForeach;

4x"2y~2

x"4 + 12x72yz + 36y~2z"2

9y~4 - 18y~2z"2 + 9z74

See Also: For (VI-6.12 pg.206), Repeat (VI-18.14 pg.321), While (VI-23.3 pg.358)

VI-6.14 Format

Format (E:0OBJECT,N:INT) : STRING

syntax

Description

Like Sprint, this function converts the value of E into a string. If the string has fewer than N characters, then
spaces are added to the front to make the length N.

example

L := [1,2,3];
M := Format(L,20);
M;

1, 2, 3]
Type (L) ;
LIST
Type (M) ;

208 Chapter VI-6. F

STRING

Format(L,2); -- "Format" does not truncate
(1, 2, 3]

See Also: 10.SprintTrunc (VI-9.22 pg.249), Latex (VI-12.2 pg.263), Sprint (VI-19.18 pg.338)

VI-6.15 Fraction

Fraction(E:0BJECT,F:0BJECT)

syntax

Description

This function returns E/F provided the quotient is defined (see “Algebraic Operators” (I11-3.2 pg.51)).

example
Use R ::= Qlx,y];
Fraction(2,3);
2/3

Fraction(2,4);

1/2

Fraction(x,x+y);
x/(x +y)
Fraction(5%11,6%11);
10 % 11

See Also: Algebraic Operators (I11-3.2 pg.51)

VI-6.16 Function

Function(S:STRING) : FUNCTION
Function(P:STRING,S:STRING) : FUNCTION

syntax

Description

This function returns the function—user-defined or built in—identified by the string S. In the second form,
one first provides the name of the package, then the name of the function. (An alternative is the syntax
“Function(P.S)”.

One may use “Function” to assign a function to a variable which can then be executed via the function
“Call” (VI-3.1 pg.169):

example

F := Function("Deg");

Type(F) ;
FUNCTION
Call(F,x+y~2);
2

VI-6.17. Functions 209

-- the Call-statement here is equivalent to:
Deg(x+y~2);

Function("Insert");

Insert(L,I,0)

Function("$list","Insert"); -- or "Function("$list.Insert")"
Insert(L,I,0)

See Also: Call (VI-3.1 pg.169), Functions (VI-6.17 pg.209)

VI-6.17 Functions

Functions(S:STRING) :LIST of FUNCTION

syntax

Description

This function returns a list of functions defined in the package identified by S. (The function “Packages”
(VI-16.1 pg.305) lists the packages currently loaded into memory.)

example
Functions("$binrepr") ;
[About (), Man(), Initialize(), PolyBinRepr_xi(P), PolyBinRepr_xii(P),
BinExp(...), EvalBinExp(BE,Up,Down), Aux_BinExp(H,N), Tagged(X,T),
Print_Bin(B), Print_BinExp(BE), Print_BinRepr(BR), PkgName ()]
L :=1It;
Describe L[6];
Define BinExp(...)
If Shape(ARGV) = [
INT,
INT] Then
Return($binrepr.Aux_BinExp (ARGV[1],ARGV[2]))
E1sIf Shape(ARGV) = [
INT,
INT,
INT,
INT] Then
Return(EvalBinExp ($binrepr.Aux_BinExp(ARGV[1],ARGV[2]),ARGV[3],ARGV[4]))
Else
Error (ERR.BAD_PARAMS," (BinExp arguments must be 2 or 4 INT)")
EndIf;
EndDefine;

210 Chapter VI-6. F

Chapter VI-7

G

VI-7.1 GB.Complete

syntax

GB.Complete(M: IDEAL or MODULE) :NULL

Description

This function completes a calculation started in the Interactive Groebner Framework. For explanations and
examples, see “The Interactive Groebner Framework” (IV-13.3 pg.129).
See Also: The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.2 GB.GetBettiMatrix
syntax

GB.GetBettiMatrix (M:IDEAL or MODULE) : TAGGED("$io.Matrix")

Description

This function, if used after executing “Res(M)”, prints the Betti matrix for M. Within the Interactive Groebner
Framework, in which resolutions may be computed one step at a time, the function returns the Betti matrix for
the part of the resolution computed so far. See “GB.GetRes” for an example.

example
Use R ::= Q[t,x,y,z];
I := Ideal(x"2-yt,xy-zt,xy);
Res(I);

0 --> R"2(-5) --> R"4(-4) --> R"3(-2)

See Also: GB.GetRes (VI-7.5 pg.213), GB.GetResLen (VI-7.6 pg.214), Res (VI-18.15 pg.322), The In-
teractive Groebner Framework (IV-13.3 pg.129), BettiDiagram (VI-2.2 pg.163), BettiMatrix (VI-2.3 pg.164)

211

212 Chapter VI-7. G

VI-7.3 GB.GetNthSyz

syntax
GB.GetNthSyz(M: IDEAL or MODULE,N:INT) :MODULE

Description

This function, if used after executing “Res(M)”, returns the Nth syzygy module for M. Within the Interactive
Groebner Framework, in which resolutions may be computed one step at a time, the function returns the part of
the Nth syzygy module computed so far. In contrast, the function “Syz” (VI-19.27 pg.342) always determines
the complete syzygy module even from within the Interactive Groebner Framework.

example
Use R ::= Q[t,x,y,z];

I := Ideal(x"2-yt,xy-zt,xy);

GB.Start_Res(I);

GB.Step(I);

GB.GetNthSyz(I,1); GB.GetNthSyz(I,2);

Module ([0])

GB.Step(I);
GB.GetNthSyz(I,1); GB.GetNthSyz(I,2);
Module ([0, 0])

GB.Steps(I,5);
GB.GetNthSyz(I,1); GB.GetNthSyz(I,2);
Module([-xz, -y~2, yzl)

GB.Complete(I);
GB.GetNthSyz(I,1); GB.GetNthSyz(I,2);
Module([-xz, -y~2, yz], [tz, xy, 0], [0, -x"2 + ty, -tz], [-x"2 + ty, 0, xyl)

See Also: GB.GetNthSyzShifts (VI-7.4 pg.212), GB.GetRes (VI-7.5 pg.213), Res (VI-18.15 pg.322), Syz
(VI-19.27 pg.342), The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.4 GB.GetNthSyzShifts

syntax
GB.GetNthSyzShifts(M:IDEAL or MODULE,N:INT):TAGGED("shifts")

Description

This function, if used after executing “Res(M)”, returns the shifts for the Nth syzygy module for M. Within
the Interactive Groebner Framework, in which resolutions may be computed one step at a time, the function
returns shifts of the part of the Nth syzygy module computed so far.

example

Use R ::= Q[t,x,y,z];
I := Ideal(x"2-yt,xy-zt,xy);
GB.Start_Res(I);

VI-7.5. GB.GetRes 213

GB.Steps(I,6);
GB.GetNthSyzShifts(I,2);
Shifts([x"2yz])
GB.Complete(I);
GB.GetNthSyzShifts(I,2);
Shifts([x"2yz, txyz, tx"2z, x"3yl)
J := Ideal(t,x)"3;

Res(J);

0 -—> R"3(-4) --> R"4(-3)
GB.GetNthSyzShifts(J,1);
Shifts([x"3, tx~2, t™2x, t~3])
GB.GetNthSyzShifts(J,2);
Shifts([tx"3, t°2x"2, t~3x])

See Also: GB.GetNthSyz (VI-7.3 pg.212), GB.GetRes (VI-7.5 pg.213), Res (VI-18.15 pg.322), Shifts
(IV-12.3 pg.124), The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.5 GB.GetRes
syntax

GB.GetRes (M:IDEAL or MODULE) :TAGGED("‘‘\verb&$gb.Res&’’")

Description

This function returns the part of the resolution of M computed so far. It does not compute the resolution of M
as does “Res” (VI-18.15 pg.322), rather, “GB.GetRes” is intended primarily to be used within the Interactive
Groebner Framework. Thus, for example, “GB.GetRes” may be used to examine the resolution as it is computed,
one step at a time.

example

Use R ::= Q[t,x,y,z];
I := Ideal(x"2-yt,xy-zt,xy);
GB.Start_Res(I); —-- start Interactive Groebner Framework
GB.Step(I); -- take one step in calculation of resolution
GB.GetRes(I); -- the resolution so far
0 --> R(-2)
GB.Step(I); -- one more step
GB.GetResLen(I); -- the computed resolution still has length 1
1
GB.GetBettiMatrix(I); -- the Betti Matrix so far

0

2

214 Chapter VI-7. G

GB.GetRes(I);
0 -—> R™2(-2)

GB.Steps(I,5); -- five more steps
GB.GetRes(I);
0 --> R(-4) --> R"3(-2)

GB.Complete(I); -- complete the calculation
GB.GetResLen(I);

GB.GetRes(I);
0 -—> R"2(-5) --> R~4(-4) --> R"3(-2)

See Also: GB.GetBettiMatrix (VI-7.2 pg.211), GB.GetResLen (VI-7.6 pg.214), Res (VI-18.15 pg.322),
The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.6 GB.GetResLen

syntax

GB.GetResLen(M:IDEAL or MODULE) :INT

Description

This function, if used after executing “Res(M)”, prints the length of the resolution for M. Within the Interactive
Groebner Framework, in which resolutions may be computed one step at a time, the function returns the length
of the part of the resolution computed so far. See “GB.GetRes” for an example.

example
Use R ::= Q[t,x,y,z];
I := Ideal(x"2-yt,xy-zt,xy);
Res(I);

0 --> R"2(-5) --> R"4(-4) --> R"3(-2)

See Also: GB.GetBettiMatrix (VI-7.2 pg.211), GB.GetRes (VI-7.5 pg.213), Res (VI-18.15 pg.322), The
Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.7. GB.ResReport 215

VI-7.7 GB.ResReport

syntax

GB.ResReport (M: IDEAL or MODULE) :NULL

Description

This function reports statistics about the current status of a resolution computation begun in the Interactive
Groebner Framework. For explanations and examples, see “The Interactive Groebner Framework” (IV-13.3

pg.129).
See Also: GB.Stats (VI-7.14 pg.216), The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.8 GB.Start_GBasis

GB.Start_GBasis(M:IDEAL or MODULE) :NULL

syntax

Description

This command starts the Interactive Groebner Framework for calculating a Groebner basis for M. For expla-
nations and examples, see “The Interactive Groebner Framework” (IV-13.3 pg.129).
See Also: The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.9 GB.Start MinGens

GB.Start_MinGens (M:IDEAL or MODULE) :NULL

syntax

Description

This command starts the Interactive Groebner Framework for calculating minimal generators for M. For expla-
nations and examples, see “The Interactive Groebner Framework” (IV-13.3 pg.129).
See Also: The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.10 GB.Start MinSyzMinGens

syntax
GB.Start_MinSyzMinGens: COMMAND ELIMINATED

Description

The “GB.Start_MinSyzMinGens” command has been removed.
See Also: The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.11 GB.Start_Res

GB.Start_Res(M:IDEAL or MODULE) :NULL

syntax

Description

This command starts the Interactive Groebner Framework for calculating a resolution for M. For explanations
and examples, see “The Interactive Groebner Framework” (IV-13.3 pg.129).
See Also: The Interactive Groebner Framework (IV-13.3 pg.129)

216 Chapter VI-7. G

VI-7.12 GB.Start Syz

syntax

GB.Start_Syz(M:IDEAL or MODULE) :NULL

Description

This command starts the Interactive Groebner Framework for calculating syzygies for M. For explanations and
examples, see “The Interactive Groebner Framework” (IV-13.3 pg.129).
See Also: The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.13 GB.Start_SyzMinGens

syntax

GB.Start_SyzMinGens: COMMAND ELIMINATED

Description

The “GB.Start_SyzMinGens” command has been removed.
See Also: The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.14 GB.Stats

GB.Stats(M:IDEAL or MODULE) :NULL

syntax

Description

This function displays information about the current status of a calculation started in the Interactive Groebner
Framework. For explanations and examples, see “The Interactive Groebner Framework” (IV-13.3 pg.129).
See Also: GB.ResReport (VI-7.7 pg.215), The Interactive Groebner Framework (IV-13.3 pg.129)

VI-7.15 GB.Step

syntax

GB.Step(M:IDEAL or MODULE):NULL

Description

This function performs one step in a calculation started in the Interactive Groebner Framework. For explanations
and examples, see “The Interactive Groebner Framework” (IV-13.3 pg.129).
See Also: The Interactive Groebner Framework (IV-13.3 pg.129), GB.Steps (VI-7.16 pg.216)

VI-7.16 GB.Steps

syntax

GB.Steps(M:IDEAL or MODULE, N:INT):NULL

Description

This function performs N steps in a calculation started in the Interactive Groebner Framework. For explanations
and examples, see “The Interactive Groebner Framework” (IV-13.3 pg.129).
See Also: The Interactive Groebner Framework (IV-13.3 pg.129), GB.Steps (VI-7.16 pg.216)

VI-7.17. GBasis 217

VI-7.17 GBasis
syntax

GBasis(M:IDEAL, MODULE, or TAGGED("Quotient")):LIST

Description

If M is an ideal or module, this function returns a list whose components form a Groebner basis for M with
respect to the term-ordering of the polynomial ring of M. If M is a quotient ring by an ideal I or of a free module
by a submodule N, then the Groebner basis for M is defined to be that of I or N, respectively.

If M is a variable, then the result is stored in M for later use. It can be retrieved as M.GBasis and can also
be seen using the command “Describe” (VI-4.13 pg.188).

For a reduced Groebner basis, use the command “ReducedGBasis” (VI-18.10 pg.319).

The coefficient ring must be a field.

example
Use R ::= Q[t,x,y];

I := Ideal(t"3-x,t"4-y);

Describe I;

Record[Type = IDEAL, Value = Record[Gens = [t"3 - x, t74 - y]]]
GBasis(I);

[t"3 - x, -tx +y, t72y - x72, x"3 - ty~2]

Describe(I); -- the Groebner basis has been stored in I

Record[Type = IDEAL, Value = Record[Gens = [t"3 - x, t"4 - y], GBasis
= [t"3 - x, -tx +y, t72y - x72, x73 - ty"2]]]

I.GBasis;

[t"3 - x, -tx +y, t72y - x72, x73 - ty~2]

For fine control and monitoring of Groebner basis calculations, see “The Interactive Groebner Framework”
(IV-13.3 pg.129) and “Introduction to Panels” (V-1.1 pg.139).

See Also: Introduction to Groebner Bases in CoCoA (IV-13.1 pg.127), GBasisTimeout (VI-7.19 pg.219),
GBasish, and more (VI-7.18 pg.217)

VI-7.18 GBasisb, and more

syntax

-operation-5(same as -operation-)
-operation-5x(same as -operation-, Info5: RECORD)
GBasisb(M:IDEAL, MODULE):LIST

GBasisbx(M:IDEAL, MODULE, Info5: RECORD):LIST

Description

Mostly the same as “GBasis” (VI-7.17 pg.217), “Intersection” (VI-9.19 pg.248), “Elim” (VI-5.2 pg.195), but
computed using the “CoCoAServer” (IV-14 pg.135).
All the “5” functions behave like the corresponding function in CoCoA-4, i.e. should give the same output!
All the “6x” functions allow extra options to be set, such as (twin)floating point computations, parameters,
shifts, different orderings, gradings...
NB if you set incompatible options with the “CurrentRing” (e.g. a different grading or ordering) the
resulting GBasis will be incompatible with “CurrentRing”... of course!
example
--—-[parameters]J-----—--————————————————
M := $cocoab.AddParamOrdMat (DegRevLexMat(3), 1); // compatible Term Ordering
Use Z/(32003) [a, x,y,z], Ord(M);

218 Chapter VI-7. G

I := Ideal((a-1)x+(a"2+a)y,(a+l)x + y);
GBasis5(I);
GBasisb5x (I, Record(NumParams=1));

--—-[Twin floats J]--————""-"-"-"-""""""""""————
Use Q[x[0..5]];

L := [Randomized(DensePoly(4)) | I In 1..2];

Time LT(Ideal(L));

LT5x(Ideal (L), Record(FloatPrecision=128));

--—-[Elimination J---—-—-——-——-----—-
Use Qlx,y,z,w[3..5]], Weights([7, 4, 3, 1, 1, 1]);

I := Ideal(
x - 7413431 w[4]"7 - 9162341 w[3]*w[4]*w[5]"5,
y - 6521443 w[4]~4 - 2312257 w[3] 2*w[4]*w[5],
z - 5329421 w([4]"3 - 2122414 w[3]*w[5]"2
);

Time E := Elim([w[3],w[4]], I);

E5 := Elim5([w[3],w[4]], I); // usually much much faster than CoCoA4
// input MUST be homogeneous

E = Eb;

----[Intersection J--——————————————————————————

Use Q[x,y,z], Weights(1,2,1);

I := Ideal(xy, z"2);

J := Ideal(yz, x-2z);

Intersectionb5(I, J);

// with parameters

M := CoCoA5.AddParamOrdMat (DegRevLexMat(3), 2); -- 2 parameters
Use Z/(32003) [a,b, x,y,z], Ord(M);

IT := Ideal(x-y);

I := (a-b+1) * x * II;

J := (atl) * y * II;

Intersectionbx(I,J, Record(NumParams=2)); -- 2 parameters

----[Syzygies J]----—-----——
Use Z/(101) [x,y,z], Weights(1,2,4);

L := [Vector(x~2,x"2),Vector(xy,xy)];

S5 := Syz0fGens5(L);

—-——=[Modules J-——————=————————mm oo
Use Q[x,y,z], PosTo;

M := Module([x,z], [z,y]);

ReducedGBasis (M) ;

ReducedGBasis5 (M) ;

ReducedGBasis5x(M, Record(IsPosTo=False));

Use Qlx,y,z], Weights([1,2,4]);

M := Module([x~2-y,1],[x"4-z,y°2]1);
Info5 := Record();
Info5.ModuleShifts := Mat([[0,2]]);
GBasisb5x(M, Infob5);

// Grading given via OrdMat and Grading Dim

VI-7.19. GBasisTimeout 219

OrdMat := Mat([[1,1,1],[2,1,1],[1,1,0]1]); // Ring Grading (first 2 Rows)
// Plus order (last row)

Use Z/(101) [x,y,z], Ord(0OrdMat), ToPos;

M := Module([y-x,0,0], [x,0,z], [0,y"2-272,01);

X := ReducedGBasis5(Module(Gens(M)));

// GBasis on a module with shifts

Info5 := Record();

Info5.0rdMat := OrdMat;

Infob5.GradingDim := 2;

Info5.ModuleShifts := Mat([[3,1,2],[2,2,5]1]1); // GrDim rows!'!

ReducedGBasis5x(M, Infob5);

See Also: Introduction to Groebner Bases in CoCoA (IV-13.1 pg.127), OpenSocket (VI-15.6 pg.301)

VI-7.19 GBasisTimeout
syntax

GBasisTimeout (M:IDEAL, MODULE, or TAGGED("Quotient"), SECONDS:INT):LIST

Description

Same as “GBasis” (VI-7.17 pg.217), but it will stop and return an error if the computation is not completed.

example

Use R ::= Q[t,x,y,z];
I := Ideal(t"3-x,t"4-y,t"5-2);

J := 1"5; Time G := GBasisTimeout(J, 1);
ERROR: Time expired: use $gb.Complete to complete the computation
CONTEXT: Error(GBasisTimeout_Err)

J :=1"5; Time G := GBasisTimeout(J, 10);
Cpu time = 1.96, User time = 2

See Also: Introduction to Groebner Bases in CoCoA (IV-13.1 pg.127), GBasis (VI-7.17 pg.217), GBasis5,
and more (VI-7.18 pg.217)

VI-7.20 GBM

GBM(L:LIST):IDEAL

syntax

Description

This function computes the intersection of ideals corresponding to zero-dimensional schemes: GBM is for affine
schemes, and “HGBM” (VI-8.15 pg.230) for projective schemes. The list L must be a list of ideals. The function
“IntersectionList” (VI-9.20 pg.249) should be used for computing the intersection of a collection of general
ideals.

The name GBM comes from the name of the algorithm used: Generalized Buchberger-Moeller.

example
Use Q[x,y,z];
I1:=IdealOfPoints([[1,2,1], [0,1,0]11); -- a simple affine scheme
I2:=IdealOfPoints([[1,1,1], [2,0,1]1]1)"2; —-- another affine scheme
GBM([I1,I2]); -- intersect the ideals

Ideal(xz + yz - z°2 - x -y + 1,

220 Chapter VI-7. G

z"3 - 2272 + z,

yz©2 - 2yz - z"2 +y + 2z - 1,

y2z -y2-yz+y,

Xy 2 + y°3 - 2x"2 - bxy - by"2 + 2z"2 + 8x + 10y - 4z - 6,
X"2y - y"3 + 2x72 + 2xy + 4y"2 - 3272 - 8x - 8y + 6z + 5,
x"3 +y"3 - 7x"2 - bxy - 4y"2 + 5z72 + 16x + 10y - 10z - 7,
y 4 - 2y"3 - 4x72 - 8xy - 3y"2 + 4z72 + 16x + 16y - 8z - 12)

See Also: Finite Point Sets: Buchberger-Moeller (II-2.24 pg.40), IdealAndSeparatorsOfPoints (VI-9.2
pg.237), IdealAndSeparatorsOfProjectivePoints (VI-9.3 pg.238), IdealOfPoints (VI-9.4 pg.239), IdealOfProjec-
tivePoints (VI-9.5 pg.240), HGBM (VI-8.15 pg.230)

VI-7.21 GCD

GCD(F_1:INT,...,F_n:INT):INT
GCD(L:LIST of INT):INT

syntax

GCD(F_1:POLY,...,F_n:POLY) :POLY
GCD (L:LIST of POLY):POLY

Description

This function returns the greatest common divisor of “F_1,...,F_n” or of the elements in the list L. For the
calculation of the GCDs and LCMs of polynomials, the coefficient ring must be a field.

example

Use R ::= Q[x,yl;

F := x72-y72;

G := (x+y)~3;
GCD(F,G);

X +y
GCD(3*4,3%8,6%16) ;
12
GCD([3%4,3%8,6%16]);
12

See Also: Div (VI-4.21 pg.192), Mod (VI-13.17 pg.281), LCM (VI-12.4 pg.264)

VI-7.22 GCDFreeBasis

GCDFreeBasis(L:LIST of INT):LIST of INT

syntax

Description

This function returns a GCD free basis of a set of integers; you can think of this as the set of all numbers
(except 1) obtainable by performing GCD and exact division operations.

Given a set N = [Ny, ...Ng] we seek a basis G = [G1, ..., G4] such that each N; is a product of powers of the
G, and the G; are pairwise coprime; the set G is called a GCD free basis for V. In general the set G is not
uniquely defined.

VI-7.23. GenericPoints 221

example
GCDFreeBasis ([Fact (20) ,Fact(10)]1);
[46189, 4, 14175]
See Also: GCD (VI-7.21 pg.220)
VI-7.23 GenericPoints
syntax

GenericPoints (NumPoints:INT) :LIST
GenericPoints(NumPoints:INT,RandomRange: INT) : LIST

Description

“GenericPoints” returns a list of NumPoints generic projective points with integer coordinates; it is not
guaranteed that these points are distinct. RandomRange specifies the largest value any coordinate may take.
If the second argument is omitted, the largest value possible is 100 (or P-1 where P is the characteristic of the
coefficient ring).

example

Use R ::= Q[x,y];GenericPoints(7);
(c1, o1, [o, 11, [1, 11, [12, 59], [6, 63], [12, 80], [17, 63]]

GenericPoints(7,500) ;
(s, ol, [o, 11, [1, 11, [220, 162], [206, 452], [98, 106], [403, 449]]

Use R ::= Z/(5) [x,y,2];

GenericPoints(7);

(fs, o, o1, o, 1, o1, [0, o, 11, [1, 1, 11, [2, 1, 11, [2, 2, 41, [3, 1, 3]]
GenericPoints(7,500);

crs, o, o1, o, 1, o1, (o, o, 11, 1, 1, 11, 1, 4, 21, [1, 3, 21, [2, 3, 3]1]

VI-7.24 GenRepr

syntax
GenRepr (X:POLY,I:IDEAL) :LIST of POLY
GenRepr (X:VECTOR,I:MODULE) : LIST of POLY

Description
This function returns a list giving a representation of X in terms of generators for I. Let the generators for I be
“[G_1,...,G_t]”. If X is in I, then “GenRepr” will return a list “[F_1,...,F_t]” such that
X =F_1xG_1 + ... + F_t*xG_t.

If X is not in I, then “GenRepr” returns the empty list, [|.
example

Use R ::= Q[x,y];

I := Ideal(x+y~2,x"2-xy);
GenRepr (x"3-x"2y-y~3-xy,I);
[-y, x]

-y I.Gens[1] + x I.Gens[2];

222 Chapter VI-7. G

x"3 - x"2y - y°3 - xy
GenRepr (x+y,I);
]

x+y IsIn I; -- the empty list was returned above since x+y is not in I
FALSE

Vi:= Vector(x,y,y"2); V2:= Vector(x-y,0,x72);

X :=x"2 V1l - y~2 V2;

M := Module(V1,V2);

GenRepr (X,M);

[(x°2, -y°2]

See Also: DivAlg (VI-4.22 pg.192), IsIn (VI-9.29 pg.252), NF (VI-14.7 pg.290)

VI-7.25 Gens

Gens (I:IDEAL):LIST
Gens (M:MODULE) :LIST

syntax

Description

This function returns a list of polynomials which generate the ideal I or the module M. The list is not necessarily
minimal. Note that I.Gens and M.Gens will give the same lists of generators. The advantage of “Gens” is that
its argument can be any expression evaluating to an ideal or module.

example
Use R ::= Q[x,y];
I := Ideal(y"2-x"3,xy);
Gens(I);

[-x"3 + y72, xy]

Gens(I"2);
[x"6 - 2x"3y"2 + y~4, -x"4y + xy~3, x"2y"2]

See Also: Minimalize (VI-13.13 pg.280), Minimalized (VI-13.14 pg.280)

VI-7.26 Get

Get (D:DEVICE,N:INT) :LIST of INT

syntax

Description

This function reads N characters from D and returns the list of their ascii codes.
example
D := OpenIFile("io.cpkg"); -- open the file "io.cpkg"
Get(D,10); -- get the first 10 characters

[45, 45, 32, 105, 111, 100, 101, 118, 46, 112]

VI-7.27. GetEnv 223

Ascii(It); convert the ascii code to characters

-— lodev.p

Ascii(Get(D,10)); -- get the next 10 characters and convert
kg : 0.1 :

Close(D);

The instruction “Get (DEV.STDIN,3)”, for instance, will read 3 characters typed in by the user. Clever use
of this function can be used to prompt a user for input to a function, although it is usually easier for functions
to take input directly as arguments. NOTE: this function does not work properly under the GUI Interface.

See Also: Introduction to IO (II1-7.1 pg.61), OpenlFile (VI-15.1 pg.299), OpenOFile (VI-15.4 pg.301),
OpenlString (VI-15.2 pg.299), OpenOString (VI-15.5 pg.301)

VI-7.27 GetEnv

GetEnv (S:STRING) : STRING

syntax

Description

This function returns the value of system shell variables
example

GetEnv ("HOME") ;
/Users/bigatti

GetEnv ("COCOARC") ;
/Users/bigatti/.cocoarc

GetEnv ("COCOA_PACKAGES") ;
/Applications/CoCoA-4.7/packages

VI-7.28 GetErrMesg

syntax

GetErrMesg(E:ERROR) : STRING

Description

This function returns the error message associated with an error.

example

Str := GetErrMesg(1/0);
PrintLn(Str);
Division by zero

See Also: Catch (VI-3.4 pg.171), Error (VI-5.6 pg.197)

VI-7.29 Gin, Ginb

syntax
Gin(I: IDEAL): IDEAL

Gin(I: IDEAL, Range: INT): IDEAL

Gin5(I: IDEAL): IDEAL

Gin5(I: IDEAL, Range: INT): IDEAL

224 Chapter VI-7. G

Description

These functions return the [probabilistic] gin (generic initial ideal) of the ideal I. It is obtained by computing
the leading term ideal of g(I), where g is a random change of coordinates.

While “Gin” uses integer coefficients in [-Range, Range], with default value [-100, 100] (repeated until 4
consecutive random changes of coordinates give the same result), the function “Gin5” uses the special TwinFloat
implementation in “CoCoAServer” (IV-14 pg.135) to allow a much wider range of coefficients (and then performs

the computation only twice). The latter is faster, but needs you to start the server!
example

Use R ::= Q[x,y,z], DegRevlLex;
Gin(Ideal(y~2-xz, x"2z-yz"2));
Ideal(x"2, xy~2, y~4)
Use R ::= Qlx,y,z], Lex;
Gin(Ideal(y~2-xz, x"2z-yz~2), 10); -- coeffs in [-10, 10]
Ideal(x"2, xy~2, xyz"2, xz"4, y~6)
Use R ::= Q[x,y,z], DegRevLex; -- default range [10000, 10000]
Ginb(Ideal(y~2-xz, x"2z-yz~2));
Ideal(x"2, xy~2, y~4)
Use R ::= Q[x,y,z], Lex;
Gin5(Ideal(y~2-xz, x"2z-yz"2), 2); -- coeffs in [-2,2], dangerously small:
-- ==> answer might be wrong

VI-7.30 GlobalMemory

syntax
GlobalMemory () : TAGGED ("Memory")

Description

This function prints the contents of the global memory which are not bound to rings: variables prefixed by

“MEMORY” but not by “MEMORY.ENV”. Untagging the value returned by “GlobalMemory” gives a list of strings

which are identifiers for the global variables. The command “Fields(MEMORY)” gives the same set of strings.
For more information about memory in CoCoA, see the chapter entitled “Memory Management” (I1I-8

pg.67).

example
Use R ::= Q[x,y,z];
A := 3;
ENV.R.B := 7;
MEMORY.C := 6;
GlobalMemory () ;
[llcll, "DEV", IIENVII, "ERR.", "PKG"]
MEMORY.ENV; -- the record holding the rings defined during the

—- CoCoA session
Record[Q = Q, Qt = Q[t], R = Qlx,y,z], Z = Z]

Memory(); -- the working memory

[IIAII’ llItIl]

Memory(R); -- the global variables bound to the ring R
[HB"]

See Also: Memory (VI-13.11 pg.279), Memory Management (I11-8 pg.67)

Chapter VI-8

H

VI-8.1 H.Browse

H.Browse() :NULL;
H.Browse(N:INT) :NULL

syntax

Description

This function browses the online help system. Without an argument, it displays the next section of the online
manual or the next command. With integer argument N, it skips ahead (or skips back, if N is negative) N
sections of the manual or N commands.

See Also: H.Commands (VI-8.2 pg.225), Man (VI-13.3 pg.273)

VI-8.2 H.Commands

H.Commands () :NULL;
H.Commands (S:STRING) :NULL

syntax

Description

This function prints a list of commands associated with the string S. For example, “H.Commands ("poly")” will
list all documented commands having to do with polynomials. Unlike “?”, this function searches only the list
of commands (not both the list of commands and online manual, both of which are a part of the online help
system). Also, unlike “?”, this function does not try to use the string S to identify a unique function. Instead
it looks for all functions whose “type” is S, i.e., that are somehow related with the search string S. The types
are often the names of data types in CoCoA. A complete list of these types, along with additional information,
can be found by entering “H.Commands()”, without any argument.

After a command name is found, complete information on the command can be obtained using “?”. The
function “H.Syntax” prints just the syntax for the command.

Note: entering “H.Commands("")” will produce a complete list of the documented commands.

See Also: Man (VI-13.3 pg.273), H.Syntax (VI-8.7 pg.227)

VI-8.3 H.Man

H.Man() :NULL
H.Man(S:STRING) : NULL
H.Man(S:STRING,N:INT) :NULL

syntax

where N = 0 or 1.

225

226 Chapter VI-8. H

Description

This function is synonymous with “Man” (VI-13.3 pg.273), which performs the same task as “?”. See “Man”
(VI-13.3 pg.273) for more information.
See Also: H.Commands (VI-8.2 pg.225), H.Syntax (VI-8.7 pg.227), Man (VI-13.3 pg.273)

VI-8.4 H.OutCommands

syntax

H.OutCommands (S:STRING) : NULL
H.OutCommands (S:STRING,A: INT) :NULL
H.OutCommands (S:STRING,A:INT,B:INT) :NULL

Description

The function prints the online descriptions of commands to the text file named S. Warning: if a file named
S already exists, it is appended to. The first form prints all of the command descriptions, the second prints
only the command with number A, and the last prints commands with numbers A to B. The total number of
commands is given by Len(MEMORY.Doc.Commands). The name of the command with number T is MEM-
ORY.Doc.Commands[I].Title. Entering “H.Commands ("")” will list the documented commands, in order.

example

H.OutCommands ("CommandFile",1,10);

To print sections of the online manual, use the function “H.0OutManual” (VI-8.5 pg.226).
See Also: H.OutManual (VI-8.5 pg.226)

VI-8.5 H.OutManual

syntax

H.OutManual (S:STRING) :NULL

H.OutManual (S:STRING,P:INT) :NULL

H.OutManual (S:STRING,P:INT,C:INT) :NULL
H.OutManual (S:STRING,P:INT,C:INT,S:INT) :NULL

Description

This function prints sections of the manual to a text file named S. Warning: if a file named S already exists, it
is appended to. The first form prints the entire manual to a file. The others are used to print part P, chapter
C, section S. Recall that the online help consists of a manual *and* a list of commands. To print out the
commands, use “H.OutCommands” (VI-8.4 pg.226).

example

H.OutManual ("partl.chp2",1,2);

See Also: H.OutCommands (VI-8.4 pg.226), H.Toc (VI-8.9 pg.228)

VI-8.6 H.SetMore

syntax

H.SetMore(N:INT) :NULL
H.SetMore() :NULL

VI-8.7. H.Syntax 227

Description

The purpose of these functions is to turn on and off filtering of the online help system through the function
“More”. When the online help system filters through “More” any output from online help is stored in a
“MoreDevice” then printed to the screen, N lines at a time. The number N is stored in the global variable
MEMORY .MoreCount and may be set directly by the user with the command “MEMORY.MoreCount := X”
where X is an integer. The idea is to keep the output from scrolling off of the screen. See “More” (VI-13.23
pg.284) for more information.

The function “H.SetMore” turns on filtering through “More”; and if the optional argument N is supplied, it
sets MEMORY .MoreCount to N.

The function “H.UnSetMore” turns off filtering through “More”, without affecting MEMORY.MoreCount.

See Also: More (VI-13.23 pg.284), H.UnSetMore (VI-8.11 pg.228)

VI-8.7 H.Syntax

syntax

H.Syntax () :NULL
H.Syntax(S:STRING) : NULL

Description

The first form of the command, with no arguments, just prints this message. The second form looks for a
command with associated keywords containing S as a substring. If S is exactly the keyword of a command
or if S is the substring of a keyword of only one command, then the syntax for that command is displayed.
(The command “H.Browse” (VI-8.1 pg.225) can then be called to display additional information.) Otherwise,
H.Syntax(S) lists the names all commands with associated keywords containing S as a substring. Note: the
search is case insensitive.

example

H.Syntax("dense");
DensePoly(N:INT) :POLY

Description: the sum of all power-products of a given degree

--> "H.Browse() ;" for more information. <--

VI-8.8 H.Tips

syntax

H.Tips() :NULL

Description

This function prints advice on using CoCoA’s online help system effectively.
example

H.Tips();

Here are some tips for using the online help system:

1. Searches are case insensitive and your search string need only be a
substring of a keyword to make a match. Thus, for instance, to find
the section of the manual entitled "Commands and Functions for
Polynomials", it is enough to type: "7for poly".

228 Chapter VI-8. H

---> Output suppressed <---

See Also: Online Help (V-2.1 pg.145)

VI-8.9 H.Toc

syntax
H.Toc() :NULL;

H.Toc(P:INT) :NULL

H.Toc(P:INT,C:INT) :NULL

H.Toc("all") :NULL

Description

The first form of this function, with no arguments, lists the titles of the parts and chapters of the manual. The
second prints the table of contents for part P. The third prints the table of contents for part P, chapter C. The
last form, with the string “all’ as argument, prints the entire table of contents.

The contents of each section can be read online by giving enough of its title as an argument to “?”.

See Also: Man (VI-13.3 pg.273)

VI-8.10 H.Tutorial

H.Tutorial() :NULL

syntax

Description

The CoCoA tutorial is part of the online manual. This function displays the first section of the tutorial. The
following sections can then be browsed using “H.Browse” (VI-8.1 pg.225).
See Also: H.Browse (VI-8.1 pg.225)

VI-8.11 H.UnSetMore

syntax

H.UnSetMore () :NULL

Description

The purpose of these functions is to turn on and off filtering of the online help system through the function
“More”. When the online help system filters through “More” any output from online help is stored in a
“MoreDevice” then printed to the screen, N lines at a time. The number N is stored in the global variable
MEMORY .MoreCount and may be set directly by the user with the command “MEMORY.MoreCount := X”
where X is an integer. The idea is to keep the output from scrolling off of the screen. See “More” (VI-13.23
pg.284) for more information.

The function “H.UnSetMore” turns off filtering through “More”, without affecting MEMORY .MoreCount.
(see “H.SetMore” (VI-8.6 pg.226))

See Also: More (VI-13.23 pg.284), H.SetMore (VI-8.6 pg.226)

VI-8.12 HColon

HColon(M:IDEAL,N:IDEAL) : IDEAL

syntax

VI-8.13. Head 229

Description

The function “Colon” (VI-3.17 pg.176) returns the quotient of M by N: the ideal of all polynomials F such that
F*G is in M for all G in N.

This function computes the same ideal using a Hilbert-driven algorithm. It differs from “Colon” (VI-3.17
pg.176) only when the input is non-homogeneous, in which case, “HColon” may be faster.

example

Use R ::= Qlx,y];

Ideal(xy,x"2) : Ideal(x);
Ideal(y, x)

Colon(Ideal(x"2,xy), Ideal(x,x-y"2));
Ideal (x)

HColon(Ideal(x"2,xy), Ideal(x,x-y~2));
Ideal(x)

See Also: HSaturation (VI-8.26 pg.235), Saturation (VI-19.1 pg.329), HColon (VI-8.12 pg.228), Colon
(VI-3.17 pg.176)

VI-8.13 Head

Head (L:LIST) :0BJECT

syntax

Description

This function returns the first element of the list L.
example

Head([3,2,1]1);

See Also: First (VI-6.6 pg.203), Last (VI-12.1 pg.263), Tail (VI-20.3 pg.346)

VI-8.14 Help

syntax
Help(S:STRING) :NULL

Description

This command is used for extending the online help to include information about user-defined functions. It is
not the main command for getting information about CoCoA online. For information about online help in
general, enter “?” or “7online help”.

There are two ways to let “Help” know about a help string associated with a user-defined function. First,
one may use the line “Help S” where S is the help string, as the first line of the function definition.

example
Define AddThree(X)
Help "adds 3 to its argument";
Return X+3;
EndDefine;
Help("AddThree");
adds 3 to its argument

230 Chapter VI-8. H

The second way to provide a help string for “Help” is to define a function “Help_F” where F is the function
identifier.

example
Define AddFive (X)
Return X+5;
EndDefine;
Define Help_AddFive()
Return "adds 5 to its argument";
EndDefine;
Help("AddFive") ;
adds 5 to its argument

See Also: Define (VI-4.4 pg.182), Online Help (V-2.1 pg.145)

VI-8.15 HGBM

syntax
HGBM(L:LIST) : IDEAL

Description

This function computes the intersection of ideals corresponding to zero-dimensional schemes: “GBM” (VI-7.20
pg.219) is for affine schemes, and HGBM for projective schemes. The list L must be a list of ideals. The function
“IntersectionList” (VI-9.20 pg.249) should be used for computing the intersection of a collection of general
ideals.

The name GBM comes from the name of the algorithm used: Generalized Buchberger-Moeller. The prefix
H comes from Homogeneous since ideals of projective schemes are necessarily homogeneous.

example
Use Q[x[0..21];
I1:=IdealOfProjectivePoints([[1,2,1], [0,1,0]11); -— simple projective scheme
I2:=IdealOfProjectivePoints([[1,1,1], [2,0,1]1]1)"2; -- another projective scheme
HGBM([I1,I2]); -- intersect the ideals

Ideal(x[0]"3 - x[0]x[1]1"2 - 5x[0]"2x[2] + x[1]"2x[2] + 8x[0]x[2]"2 - 4x[2]"3,
x[0]"2x[1] + x[0]x[1]"2 - 3x[0]x[1]1x[2] - x[1]"2x[2] + 2x[1]x[2]"2,
x[0]x[1]1°3 - 2x[0]"2x[2]"2 - 5x[0]x[1]x[2]"2 - 4x[1]"2x[2]"2 +

8x[0]x[2]"3 + 10x[1]x[2]"3 - 8x[2]"4,

x[0]x[1]1"2x[2] + x[1]1°3x[2] - 2x[0]"2x[2]"2 - 5x[0]1x[1]x[2]"2

- bx[1]172x[2]"2 + 8x[0]x[2]"3 + 10x[1]x[2]"3 - 8x[2]"4,

x[1]74x[2] - 2x[1]1°3x[2]"2 - 4x[0]"2x[2]"3 - 8x[0]1x[1]1x[2]"3

- 3x[1]172x[2]"3 + 16x[0]x[2]"4 + 16x[1]1x[2]"4 - 16x[2]"5)

See Also: Finite Point Sets: Buchberger-Moeller (1I-2.24 pg.40), IdealAndSeparatorsOfPoints (VI-9.2
pg.237), IdealAndSeparatorsOfProjectivePoints (VI-9.3 pg.238), IdealOfPoints (VI-9.4 pg.239), IdealOfProjec-
tivePoints (VI-9.5 pg.240), GBM (VI-7.20 pg.219)

VI-8.16. Hilbert 231

VI-8.16 Hilbert
syntax

Hilbert (R:RING or TAGGED("Quotient")):TAGGED("‘‘\verb&$hp.Hilbert&’’")
Hilbert (R:RING or TAGGED("Quotient"),N:INT):INT

Description

The first form of this function computes the Hilbert function for R. The second form computes the N-th value
of the Hilbert function. The weights of the indeterminates of R must all be 1. If the input is not homogeneous,
the Hilbert function of the corresponding leading term (initial) ideal or module is calculated. For repeated
evaluations of the Hilbert function, use “EvalHilbertFn” (VI-5.9 pg.199) instead of “Hilbert(R,N)” in order
to speed up execution.

This function is the same as “HilbertFn” (VI-8.18 pg.232).

The coefficient ring must be a field.

example
Use R ::= Q[t,x,y,z];
Hilbert(R/Ideal(z"2-xy,xz"2+t"3));
H() =1
H(1) = 4

H(t) = 6t-3 for t >= 2

M := R"2/Module([x"2-t,xy-z"3], [zy,tz-x"3y+3]);

Hilbert (M) ;
H(0) = 2
H(1) = 8
H(2) = 20
H(3) = 39

H(t) = 3t"2 + 6t-7 for t >= 4
Hilbert (M, 3)

39
Hilbert(M,5);

98

See Also: EvalHilbertFn (VI-5.9 pg.199), HilbertPoly (VI-8.19 pg.232), HVector (VI-8.27 pg.236),
HilbertSeries (VI-8.20 pg.232)

VI-8.17 HilbertBasis

HilbertBasis (M:MAT): LIST

syntax

where M is a matrix over Z.

Description

This function returns a list whose components are lists (of non-negative integers) representing the Hilbert basis
for the monoid of elements with non-negative coordinates in the kernel of M.

example
M := Mat([[1,-2,3,4], [1, 0, O, -111);
HilbertBasis(M);

[fo, 3, 2, o1, 1, 4, 1, 11, [2, 5, 0, 2]]

M * Transposed(Mat(It));

232 Chapter VI-8. H

Mat ([
(o, o, ol,
[0, 0, 0]

VI-8.18 HilbertFn

syntax
HilbertFn(R:RING or TAGGED("Quotient")):TAGGED("‘‘\verb&$hp.Hilbert&’’")
HilbertFn(R:RING or TAGGED("Quotient"),N:INT):INT

Description

Same as “Hilbert” (VI-8.16 pg.231).
See Also: EvalHilbertFn (VI-5.9 pg.199), HilbertPoly (VI-8.19 pg.232), HVector (VI-8.27 pg.236),
HilbertSeries (VI-8.20 pg.232)

VI-8.19 HilbertPoly

syntax
Hilbert (R:RING or TAGGED("Quotient")):POLY in the ring Qt.

Description

This function returns the Hilbert polynomial for R as a polynomial in the standard CoCoA ring Qt (= Q[t]).
The weights of the indeterminates of R must all be 1, and the coefficient ring must be a field.
If the input is not homogeneous, the Hilbert polynomial of the corresponding leading term (initial) ideal or
module is calculated. For the Hilbert *function®, see “Hilbert” (VI-8.16 pg.231).

example
Use R ::= Qlw,x,y,z];
I := Ideal(z"2-xy,xz"2+w"3);
Hilbert (R/I);
H(O) =1
H(1) = 4

H(t) = 6t-3 for t >= 2

F := HilbertPoly(R/I);

F; -- a polynomial in the ring Qt
Qt :: 6t-3

Subst (F,Qt::t,3);

Qt :: 15

See Also: EvalHilbertFn (VI-5.9 pg.199), Hilbert (VI-8.16 pg.231), HVector (VI-8.27 pg.236), Hilbert-
Series (VI-8.20 pg.232)

VI-8.20 HilbertSeries

syntax
HilbertSeries(M:RING or TAGGED("Quotient")):TAGGED("$hp.PSeries")

VI-8.21. HilbertSeriesMultiDeg 233

Description

This function computes the Hilbert-Poincare series of M. The input, M, must be homogeneous (with respect to
the first row of the weights matrix). In the standard case, i.e. the weights of all indeterminates are 1, the result
is simplified so that the power appearing in the denominator is the dimension of M.

The function “Poincare” (VI-16.8 pg.307) is exacly the same as “HilbertSeries” (VI-8.20 pg.232).

NOTES:

(i) the coefficient ring must be a field.

(ii) these functions produce tagged objects: they cannot safely be (non-)equality to other values.

For more information, see the article: A.M. Bigatti, “Computations of Hilbert-Poincare Series,” J. Pure
Appl. Algebra, 119/3 (1997), 237-253.
example

Use R ::= Q[t,x,y,2];

HilbertSeries(R/Ideal(0));

(1) / (1-t)"4

Q := R/Ideal(t"2,x,y"3); Poincare(Q);

(1 +2t+2t72+t73) / (1-t)

Poincare(R"2/Module([x~2,y], [z,y1));

2+1t) / (1-t)"3

Use R ::= Q[t,x,y,z], Weights([1,2,3,4]);

Poincare(R/Ideal(t"2,x,y"3));

--— Non Simplified Pseries -—-

(1-2t72 + t74 - t79 + 2t711 - t713) / ((1-t) (1-t"2) (1-t"3) (1-t"4))
Use R ::= Q[t,x,y,z], Weights(Mat([[1,2,3,4],[0,0,5,8]11));
Poincare(R/Ideal(t"2,x,y"3));

--— Non Simplified Pseries -—-

(- t713x715 + 2t"11x715 - t79x715 + t74-2t"2 + 1) / ((1-t) (1-t"2) (1-t~3x"5) (1-t~4x"8)

See Also: Dim (VI-4.18 pg.191), Hilbert (VI-8.16 pg.231), HVector (VI-8.27 pg.236), Multiplicity (VI-
13.24 pg.285), HilbertSeriesShifts (VI-8.22 pg.234), HilbertSeriesMultiDeg (VI-8.21 pg.233), Weights Modifier
(IV-8.5 pg.105), WeightsMatrix (VI-23.2 pg.357)

VI-8.21 HilbertSeriesMultiDeg

syntax
HilbertSeriesMultiDeg (TAGGED("Quotient") ,WM:MAT) : TAGGED ("$hp.PSeries")

Description

This function computes the Hilbert-Poincare series of M. The input, M, must be homogeneous with respect to
the grading defined by the second argument.

The function “PoincareMultiDeg” (VI-16.9 pg.308) is exacly the same as “HilbertSeriesMultiDeg” (VI-
8.21 pg.233).

NOTES: CoCoA-4 has an intrinsic limitation on multigradings (“Weights Modifier” (IV-8.5 pg.105)) which
does not allow zero-entries in the first row of the defining matrix. This function performs all the appropriate
conversions for computing the HilbertSeries wrt any positive grading (“IsPositiveGrading” (VI-9.32 pg.253)).
example

Use R ::= Qlx,y,z];

WM := Mat([[l,O,O] 3 [1:_170]]);
HilbertSeriesMultiDeg(R/Ideal (Indets())"2, WM);

234 Chapter VI-8. H

See Also: HilbertSeries (VI-8.20 pg.232), Weights Modifier (IV-8.5 pg.105), IsPositiveGrading (VI-9.32
pg-253), PositiveGrading4 (VI-16.12 pg.309), PoincareMultiDeg (VI-16.9 pg.308)

VI-8.22 HilbertSeriesShifts

syntax
HilbertSeriesShifts(M: Module, ShiftsList: LIST):TAGGED("$hp.PSeries")

HilbertSeriesShifts(M: TAGGED("Quotient"), ShiftsList: LIST)
:TAGGED("$hp.PSeries")

Description

This function computes the Hilbert-Poincare series of a (single-graded) module M with shifts. The input, M,
must be homogeneous (with respect the weights list). In the standard case, i.e. the weights of all indeterminates
are 1, the result is simplified so that the power appearing in the denominator is the dimension of M.

The function “PoincareShifts” (VI-16.10 pg.308) is exacly the same as “HilbertSeriesShifts” (VI-8.22
pg.234).

NOTES:
(i) the coefficient ring must be a field.

(ii) these functions produce tagged objects: they cannot safely be (non-)equality to other values.

For more information, see the article: A.M. Bigatti, “Computations of Hilbert-Poincare Series,” J. Pure
Appl. Algebra, 119/3 (1997), 237-253.

example

Use P ::= Qlx,y,2];

M := Module([x,y"3], [x-z,0]);
HilbertSeriesShifts(M, [2,0]);
(2x73) / (1-x)"3
PoincareShifts(P"2/M, [3,1]);
(x + x72 +2x73) / (1-x)"2

—- HilbertPoincare series of a shifted module

-- HP series of a shifted quotient module

See Also: Dim (VI-4.18 pg.191), Hilbert (VI-8.16 pg.231), HVector (VI-8.27 pg.236), Multiplicity (VI-
13.24 pg.285), Weights Modifier (IV-8.5 pg.105), WeightsMatrix (VI-23.2 pg.357)

VI-8.23 HlIntersection
syntax

HIntersection(I_1:IDEAL,...,I_n:IDEAL):IDEAL
HIntersectionList (L:LIST of IDEAL) :IDEAL

Description

The function “HIntersection” returns the intersection of “I_1,...,I_n" using a Hilbert-driven algorithm.

It differs from “Intersection” (VI-9.19 pg.248) only when the input is non-homogeneous, in which case,
“HIntersection” may be faster.

The coefficient ring must be a field.

example

Use R ::= Qlx,y,z];
HIntersection(Ideal(x-z,y-2z),Ideal(x-2z,y-z));
Ideal(x + y - 3z, y°2 - 3yz + 2z72)

See Also: Intersection (VI-9.19 pg.248), IntersectionList (VI-9.20 pg.249), HIntersectionList (VI-8.24
pg.235)

VI-8.24. HlIntersectionList 235

VI-8.24 HlIntersectionList

syntax

HIntersectionList (L:LIST of IDEAL):IDEAL

Description

The function “HIntersectionList” applies the function “HIntersection” to the elements of a list, i.e.,
“HIntersectionList([I_1,...,I_n])” is the same as “HIntersection(I_1,...,I_n)”

The coefficient ring must be a field.
example

L := [Ideal(x-z,y-22z),Ideal(x-2z,y-2z)];
HIntersectionList (L) ;
Ideal(x +y - 3z, y°2 - 3yz + 2z72)

See Also: Intersection (VI-9.19 pg.248), IntersectionList (VI-9.20 pg.249), HIntersection (VI-8.23 pg.234)

VI-8.25 Homogenized

syntax

Homogenized (X:INDET,E:T):T

where T is of type IDEAL or POLY, or T is a LIST recursively
constructed of types IDEAL, POLY, and LIST.

Description

This function returns the homogenization of E with respect to the indeterminate X, which must have weight 1.
Note that in the case where E is an ideal, “Homogenized” returns the ideal generated by the homogenizations
of all the elements of E, not just the homogenization of the generators of E (see the example, below). The
coeflicient ring must be a field for this function to work reliably.

example
Use R ::= Q[x,y,z,w];
Homogenized(w, x"~3-y);
x"3 - yw'2

Homogenized(w, [x"3-y, x"4-z]);
[x"3 - yw"2, x"4 - zw"3]
I := Ideal(x"3-y, x"4-2);
-- same as Homogenized5(w, I); Homogenized([w], I);
Homogenized(w, I); -- don’t just get the homogenizations of
-- the generators of I
Ideal(x"3 - yw™2, -xy + zw, x"2z - y 2w, y~3 - x272)
Homogenized (w, [[I,y-z"2],z-y"4]1);
[[Ideal(x"3 - yw"2, -xy + zw, x"2z - y 2w, y~3 - x272), -z"2 + yw], -y"4 + zw"3]

See Also: GBasis5, and more (VI-7.18 pg.217)

VI-8.26 HSaturation

syntax

Saturation(I:IDEAL,J:IDEAL) : IDEAL
HSaturation(I:IDEAL,J:IDEAL) :IDEAL

236 Chapter VI-8. H

Description

This functions returns the saturation of I with respect to J: the ideal of polynomials F such that F*G is in I for
all G in J¢ for some positive integer d.

It calculates the saturation using a Hilbert-driven algorithm. It differs from “Saturation” (VI-19.1 pg.329)
only when the input is inhomogeneous, in which case, “HSaturation” may be faster.

The coefficient ring must be a field.

example

Use R ::= Qlx,y];

I := Ideal(x"4-x, yx—-2x);
Saturation(I, Ideal(x));
HSaturation(I, Ideal(x));

See Also: Colon (VI-3.17 pg.176), HColon (VI-8.12 pg.228), Saturation (VI-19.1 pg.329)

VI-8.27 HVector

HVector (R:RING or TAGGED("Quotient")):LIST

syntax

Description

This function returns the h-vector of M, i.e., the coefficients of the numerator of the simplified Poincare series
for M. M can be a module or a quotient.

The weights of the indeterminates of the polynomial ring of M must all be 1, and the coefficient ring must
be a field.

If the input is not homogeneous, the Hilbert function of the corresponding leading term (initial) ideal or
module is calculated.

example

Use R ::= Q[t,x,y,2];

HVector (R/Ideal(x,y,z)"5);

[1, 3, 6, 10, 15]
Poincare(R/Ideal(x,y,z)"5);

(1 + 3t +6t72 + 10t"3 + 15t74) / (1-t)

See Also: Hilbert (VI-8.16 pg.231), HilbertSeries (VI-8.20 pg.232)

Chapter VI-9

I

VI-9.1 Ideal

syntax

Ideal(P_1:POLY,...,P_n:POLY) : IDEAL
Ideal(L:LIST) :IDEAL
Ideal (M:MODULE) : IDEAL

where L is a list of polynomials and M is contained in a free module
of rank 1.

Description

The first form returns the ideal generated by “P_1,...P_n". The second form returns the ideal generated by
the polynomials in L. The third form returns the ideal generated by the polynomials in M; it is the same as
“Cast (M, IDEAL)”, and requires that the module be a submodule of the free module of rank 1.

example
Use R ::= Q[x,y,z];
I := Ideal(x-y~2,xy-2);
I;

Ideal(-y"2 + x, xy - 2)
L := [xy-z,x-y~2];

J := Ideal(L);

I=2J;

M := Module([y~3-z], [x-y~2]);
Ideal(M) = I;
TRUE

VI-9.2 IdealAndSeparatorsOfPoints

syntax
IdealAndSeparators0fPoints(Points:LIST) :RECORD

where Points is a list of lists of coefficients representing a set of
distinct points in affine space.

237

238 Chapter VI-9. 1

Description

This function computes the results of “Ideal0fPoints” (VI-9.4 pg.239) and “Separators0fPoints” (VI-19.4
pg.330) together at a cost lower than making the two separate calls. The result is a record with three fields:

Points -- the points given as argument
Ideal -- the result of IdealOfPoints
Separators -- the result of Separators0OfPoints

Thus, if the result is stored in a variable with identifier X, then: X.Points will be the input list of points; X.Ideal
will be the ideal of the set of points, with generators forming the reduced Groebner basis for the ideal; and
X.Separators will be a list of polynomials whose i-th element will take the value 1 on the i-th point and 0 on
the others.

NOTE:

* the current ring must have at least as many indeterminates as the dimension of the space in which the
points lie;

* the base field for the space in which the points lie is taken to be the coefficient ring, which should be a
field;

* in the polynomials returned, the first coordinate in the space is taken to correspond to the first indeter-
minate, the second to the second, and so on;

*if the number of points is large, say 100 or more, the returned value can be very large. To avoid possible
problems when printing such values as a single item we recommend printing out the elements one at a time as
in this example:

X := IdealAndSeparators0fPoints(Pts);

Foreach Element In Gens(X.Ideal) Do
PrintLn Element;

EndForeach;

For ideals and separators of points in projective space, see “IdealAndSeparatorsOfProjectivePoints”
(VI-9.3 pg.238).

example

Use R ::= Qlx,y];

Points := [[1, 2], [3, 4], [5, 61];

X := IdealAndSeparators0fPoints(Points);
X.Points;

[y, 21, [3, 41, [5, 6]1]

X.Ideal;

Ideal(x - y + 1, y°3 - 12y°2 + 44y - 48)

X.Separators;
[1/8y"2 - 5/4y + 3, -1/4y"2 + 2y - 3, 1/8y"2 - 3/4y + 1]

See Also: GBM (VI-7.20 pg.219), HGBM (VIL-8.15 pg.230), GenericPoints (VI-7.23 pg.221), IdealAnd-
SeparatorsOfProjectivePoints (VI-9.3 pg.238), IdealOfPoints (VI-9.4 pg.239), IdealOfProjectivePoints (VI-9.5
pg.240), Interpolate (VI-9.17 pg.247), QuotientBasis (VI-17.2 pg.313), SeparatorsOfPoints (VI-19.4 pg.330),
SeparatorsOfProjectivePoints (VI-19.5 pg.331)

V1-9.3 IdealAndSeparatorsOfProjectivePoints

syntax
IdealAndSeparators0fProjectivePoints (Points:LIST) :RECORD

where Points is a list of lists of coefficients representing a set of
distinct points in projective space.

VI-9.4. IdealOfPoints 239

Description

This function computes the results of “Ideal0fProjectivePoints” (VI-9.5 pg.240) and “Separators0fProjectivePoints”
(VI-19.5 pg.331) together at a cost lower than making the two separate calls. The result is a record with three
fields:

Points -- the points given as argument
Ideal -- the result of IdealOfProjectivePoints
Separators -- the result of SeparatorsOfProjectivePoints

Thus, if the result is stored in a variable with identifier X, then: X.Ideal will be the ideal of the set of points,
with generators forming a reduced Groebner basis for the ideal; and X.Separators will be a list of homogeneous
polynomials whose i-th element will be non-zero (actually 1, using the given representatives for the coordinates
of the points) on the i-th point and 0 on the others.

NOTE:

* the current ring must have at least one more indeterminate than the dimension of the projective space in
which the points lie, i.e, at least as many indeterminates as the length of an element of the input, Points;

* the base field for the space in which the points lie is taken to be the coefficient ring, which should be a
field;

* in the polynomials returned, the first coordinate in the space is taken to correspond to the first indeter-
minate, the second to the second, and so on;

* if the number of points is large, say 100 or more, the returned value can be very large. To avoid possible
problems when printing such values as a single item we recommend printing out the elements one at a time as
in this example:

X := IdealAndSeparatorsOfProjectivePoints(Pts);
Foreach Element In Gens(X.Ideal) Do

PrintLn Element;
EndForeach;

For ideals and separators of points in affine space, see “IdealAndSeparators0fPoints” (VI-9.2 pg.237).

example
Use R ::= Qlx,y,z];

Points := [[0,0,1],[1/2,1,1],[0,1,01];

X := IdealAndSeparators0fProjectivePoints(Points);
X.Points;

(o, o, 11, 1, 1, 11, [0, 1, 011

X.Ideal;

Ideal(xz - 1/2yz, xy - 1/2yz, x°2 - 1/4yz, y 2z - yz~2)

X.Separators;
[-2x + z, x, -2x + y]

See Also: HGBM (VI-8.15 pg.230), GBM (VI-7.20 pg.219), GenericPoints (VI-7.23 pg.221), Ideal And-
SeparatorsOfPoints (VI-9.2 pg.237), IdealOfPoints (VI-9.4 pg.239), IdealOfProjectivePoints (VI-9.5 pg.240),
Interpolate (VI-9.17 pg.247), QuotientBasis (VI-17.2 pg.313), SeparatorsOfPoints (VI-19.4 pg.330), Separator-
sOfProjectivePoints (VI-19.5 pg.331)

VI-9.4 1IdealOfPoints

IdealOfPoints(Points:LIST) : IDEAL

syntax

where Points is a list of lists of coefficients representing a set of
distinct points in affine space.

240 Chapter VI-9. 1

Description

This function computes the reduced Groebner basis for the ideal of all polynomials which vanish at the given
set of points. It returns the ideal generated by that Groebner basis.

NOTE:

* the current ring must have at least as many indeterminates as the dimension of the space in which the
points lie;

* the base field for the space in which the points lie is taken to be the coefficient ring, which should be a
field;

* in the polynomials returned, the first coordinate in the space is taken to correspond to the first indeter-
minate, the second to the second, and so on;

*if the number of points is large, say 100 or more, the returned value can be very large. To avoid possible
problems when printing such values as a single item we recommend printing out the elements one at a time as
in this example:

I := IdealOfPoints(Pts);
Foreach Element In Gens(I) Do

PrintLn Element;
EndForeach;

For ideals of points in projective space, see “Ideal0fProjectivePoints” (VI-9.5 pg.240).

example

Use R ::= Qlx,y];

Points := [[1, 2], [3, 4], [5, 6]];

I := IdealOfPoints(Points);

I;

Ideal(x - y + 1, y°3 - 12y°2 + 44y - 48)

I.Gens; -- the reduced Groebner basis
[x -y + 1, y°3 - 12y°2 + 44y - 48]

See Also: GBM (VI-7.20 pg.219), HGBM (VI-8.15 pg.230), GenericPoints (VI-7.23 pg.221), IdealAnd-
SeparatorsOfPoints (VI-9.2 pg.237), IdealAndSeparatorsOfProjectivePoints (VI-9.3 pg.238), IdealOfProjective-
Points (VI-9.5 pg.240), Interpolate (VI-9.17 pg.247), QuotientBasis (VI-17.2 pg.313), SeparatorsOfPoints (VI-
19.4 pg.330), SeparatorsOfProjectivePoints (VI-19.5 pg.331)

VI1-9.5 IdealOfProjectivePoints

syntax

IdealOfProjectivePoints(Points:LIST) : IDEAL

where Points is a list of lists of coefficients representing a set of
distinct points in projective space.

Description

This function computes the reduced Groebner basis for the ideal of all homogeneous polynomials which vanish
at the given set of points. It returns the ideal generated by that Groebner basis.

NOTE:

* the current ring must have at least one more indeterminate than the dimension of the projective space in
which the points lie, i.e, at least as many indeterminates as the length of an element of the input, Points;

* the base field for the space in which the points lie is taken to be the coefficient ring, which should be a
field;

* in the polynomials returned, the first coordinate in the space is taken to correspond to the first indeter-
minate, the second to the second, and so on;

VI-9.6. Identity 241

*if the number of points is large, say 100 or more, the returned value can be very large. To avoid possible
problems when printing such values as a single item we recommend printing out the elements one at a time as
in this example:

I := IdealOfProjectivePoints(Pts);

Foreach Element In Gens(I) Do
PrintLn Element;

EndForeach;

For ideals of points in affine space, see “Ideal0fPoints” (VI-9.4 pg.239).

example
Use R ::= Q[x,y,z];
I := IdealOfProjectivePoints([[0,0,1],[1/2,1,1],[0,1,0]11);
I;

Ideal(xz - 1/2yz, xy - 1/2yz, x°2 - 1/4yz, y 2z - yz"2)
I.Gens; -- the reduced Groebner basis
[xz - 1/2yz, xy - 1/2yz, x"2 - 1/4yz, y~2z - yz~2]

See Also: GBM (VI-7.20 pg.219), HGBM (VI-8.15 pg.230), GenericPoints (VI-7.23 pg.221), Ideal AndSep-
aratorsOfPoints (VI-9.2 pg.237), Ideal AndSeparatorsOfProjectivePoints (VI-9.3 pg.238), IdealOfPoints (VI-9.4

pg-239), Interpolate (VI-9.17 pg.247), QuotientBasis (VI-17.2 pg.313), SeparatorsOfPoints (VI-19.4 pg.330),
SeparatorsOfProjectivePoints (VI-19.5 pg.331)

VI-9.6 Identity

syntax

Identity(N:INT) :MAT

Description

This function returns the NxN identity matrix.

example

Identity(3);
Mat ([
(1, 0, 0],
(o, 1, o1,
[0, 0, 1]

VI-9.7 If

If B Then C EndIf

If B_1 Then C_1 Else C_2 EndIf

If B_1 Then C_1 Elsif B_2 Then C_2 Elsif ... EndIf

If B_1 Then C_1 Elsif B_2 Then C_2 Elsif ... Else C_r EndIf

syntax

D If B

where the B’s are boolean expressions, the C’s are command
sequences, and D is a single command.

242 Chapter VI-9. 1

Description

If “B_n” is the first in the sequence of “B_i”’s to evaluate to TRUE, then “C_n” is executed. If none of the
“B_i"’s evaluates to TRUE, nothing is done. The construct, “Elsif B Then C” can be repeated any number
of times. Note: be careful not to type “Elseif” by mistake (it has an extraneous “e”).

In the last form, the single command D is performed if B evaluates to TRUE. NOTE: the use of this form
is discouraged. It will probably disappear from future versions of CoCoA.

For a conditional “expression”, assignable to a variable, see “Cond” (VI-3.23 pg.179).

example

Define Sign(A)
If A > O Then Return 1
Elsif A = 0 Then Return O
Else Return -1
EndIf

EndDefine;

See Also: Cond (VI-3.23 pg.179)

VI-9.8 ILogBase

syntax

ILogBase (X:RAT, Base:INT):INT

Description

This function computes the integer part (floor) of the logarithm of a rational number in a given base. The signs
of X and Base are ignored.

example
ILogBase(128,2);
7
ILogBase(81.5,3);
4
VI-9.9 Image
syntax

Image(R::E:0BJECT,F:TAGGED ("RMap")) : 0OBJECT
Image (V:0BJECT,F: TAGGED ("RMap")) : 0BJECT

where R is the identifier for a ring and F has the form
RMap(F_1:POLY,...,F_n:POLY) or the form RMap([F_1:POLY,...,F_n:POLY]).
The number n is the number of indeterminates of the ring R. In the
second form, V is a variable containing a CoCoA object dependent on R
or not dependent on any ring.

Description

This function maps the object E from one ring into the current ring as determined by F. Suppose the current
ring is S, and E is an object dependent on a ring R; then

VI-9.9. Image 243
Image(R::E,F)

returns the object in S obtained by substituting “F_i” for the i-th indeterminate of R in E. Effectively, we get
the image of E under the ring homomorphism,

F: R --—> S
x_i |--> F_i,

where “x_i” denotes the i-th indeterminate of R.
Notes:
1. The coefficient rings for the domain and codomain must be the same.

2. If R = S, one may use “Image(E,F)” but in this case it may be easier to use “Eval” (VI-5.7 pg.197) or
“Subst” (VI-19.23 pg.340).

3. The exact domain is never specified by the mapping F. It is only necessary that the domain have the
same number of indeterminates as F has components. Thus, we are abusing terminology somewhat in calling F
a map.

4. The second form of the function does not require the prefix “R: :
ically.

since the prefix is associated automat-

5. If the object E in R is a polynomial or rational function (or list, matrix, or vector of these) which involves
only indeterminates that are already in S, the object E can be mapped over to S without change using the
command “BringIn” (VI-2.9 pg.167).

example
Use C ::= Qu,v]; -- domain
Use B ::= Qlx,y]; -- another possible domain
I := Ideal(x"2-y); -- an ideal in B
Use A ::= Q[a,b,c]; -- codomain
F := RMap(a,c”2-ab);
Image(B::xy, F); -- the image of xy under F:B --> A
-a"2b + ac”2
Image(C: :uv,F); -- the image of uv under F:C --> A
-a"2b + ac”2
Image(I,F); -- the image of the ideal I under F: B --> A
Ideal(a™2 + ab - c"2)
I; -- the prefix "B::" was not needed in the previous example since
-- 1 is already labeled by B
B :: Ideal(x"2 - y)
Image(B: :Module([x+y,xy~2], [x,y]),F); -- the image of a module
Module([-ab + ¢c"2 + a, a“3b"2 - 2a"2bc"2 + ac”4], [a, -ab + c~2])
X := C:: utv; -- X is a variable in the current ring (the codomain), A,
X; -- whose value is an expression in the ring C.
C u+ v
Image (X,F); -- map X to get a value in C
-ab + ¢c"2 + a

See Also: Accessing Other Rings (IV-8.11 pg.108), Bringln (VI-2.9 pg.167), QZP (VI-17.3 pg.314), ZPQ
(VI-25.1 pg.363), Ring Mappings: the Image Function (IV-8.12 pg.109), Subst (VI-19.23 pg.340), Using (VI-21.5
pg.353)

244 Chapter VI-9. 1

VI-9.10 In

[E:OBJECT | X In L:LIST And B:BOOL]:LIST
[X In L:LIST | B:BOOL]:LIST
[E:OBJECT | X In L]

syntax

where X is a variable identifier which may occur in B or E.

Description

In the first form, E is an arbitrary CoCoA expression and B is a boolean expression, both of which are functions
of the variable X. Write E(X) for E and B(X) for B. The first listed command then returns the list of all E(X)
such that X is in the list L and B(X) evaluates to TRUE.
example
[[Xx72,X"3] | X In [-2,-1,0,1,2] And X <> 0];

(4, -8l, [1, -11, [1, 11, [4, 8]]

[X In [1,2] >< [2,3,4] | X[1]+X[2]=4];

(1, 31, [2, 21]

(Note: the >< operator is used to form Cartesian products; it is not the same as the “not equal’ operator,
<>.)
The second form of the command is the same as the first with E = X.

example
(X In [1,2,3] | X > 1];
[2, 3]

The third form is the same as the first with B = TRUE.
example

[X*2 | X In [1,2,3]1];
[1, 4, 9]

See Also: IsIn (VI-9.29 pg.252), NewList (VI-14.2 pg.288), Comp (VI-3.19 pg.177)

VI-9.11 Indet

syntax

Indet (N:INT) :POLY

Description

This function returns the N-th indeterminate of the current ring.

example
Use R ::= Qlx,y,z];
Indet(2);

See Also: IndetInd (VI-9.12 pg.245), IndetIndex (VI-9.13 pg.245), IndetName (VI-9.14 pg.245), Indets
(VI-9.15 pg.246), NumIndets (VI-14.24 pg.298)

VI-9.12. IndetInd 245

VI-9.12 IndetInd

syntax

IndetInd (X:INDET) :LIST

Description

This function returns the index of the indeterminate X.

example

Use R ::= Q[x[1..3,1..2],y,z];
IndetInd(x[3,2]);

[3, 2]

IndetInd(y);

[]

See Also: Indet (VI-9.11 pg.244), IndetIndex (VI-9.13 pg.245), IndetName (VI-9.14 pg.245), Indets (VI-
9.15 pg.246), NumlIndets (VI-14.24 pg.298)

VI-9.13 IndetIndex

syntax

IndetIndex(X:INDET) : INT

Description

This function returns the index of the named determinate. The index is determined by the order in which the
indeterminate is listed when the corresponding ring was created.

example
Use R ::= Q[x,y,z]
IndetIndex(y);
2
Use R ::= Q[x[1..2,1..2],y[1..2]];
Indets();

[x[1,1], x[1,2], x[2,1], x[2,2], y[1], y[2]]

3

S ::= Q[a,b,c];
IndetIndex(S::b);
2

See Also: Indet (VI-9.11 pg.244), IndetInd (VI-9.12 pg.245), IndetName (VI-9.14 pg.245), Indets (VI-9.15
pg-246), NumlIndets (VI-14.24 pg.298), UnivariateIndetIndex (VI-21.1 pg.351)

VI-9.14 IndetName

syntax

IndetName (X: INDET) : STRING

246 Chapter VI-9. 1

Description

This function returns the name of the indeterminate X as a string.

example
Use R ::= Qlx,y,z];
IndetName (Indet (2));
y
Type (It);
STRING

See Also: Indet (VI-9.11 pg.244), IndetInd (VI-9.12 pg.245), IndetIndex (VI-9.13 pg.245), NumlIndets
(VI-14.24 pg.298)

VI-9.15 Indets

syntax

Indets() :LIST

Description

This function returns the list of indeterminates of the current ring.

example

Use R ::= Qlx,y,z];
Indets();
[x, y, zl

See Also: Indet (VI-9.11 pg.244), IndetInd (VI-9.12 pg.245), IndetIndex (VI-9.13 pg.245), IndetName
(VI-9.14 pg.245), NumlIndets (VI-14.24 pg.298)

VI-9.16 Insert

syntax

Insert(V:LIST,N:INT,E:0BJECT) :NULL

where V is a variable containing a list.

Description

This function inserts E into the list L as the N-th component.

example

L := [llall’Ilbll’lldll,llell] ;
Insert(L,3,"c");

L;

[llall, l|bll’ llcll’ lldll’ llell]

See Also: Append (VI-1.10 pg.161), Remove (VI-18.13 pg.321)

VI-9.17. Interpolate 247

VI-9.17 Interpolate

syntax

Interpolate(Points:LIST,Values:LIST) :POLY

where Points is a list of lists of coefficients representing a set of
distinct points and Values is a list of the same size containing
numbers from the coefficient ring.

Description

This function returns a multivariate polynomial which takes given values at a given set of points.

NOTE:

* the current ring must have at least as many indeterminates as the dimension of the space in which the
points lie;

* the base field for the space in which the points lie is taken to be the coefficient ring, which should be a
field;

* in the polynomials returned, the first coordinate in the space is taken to correspond to the first indeter-
minate, the second to the second, and so on;

*if the number of points is large, say 100 or more, the returned value can be very large. To avoid possible
problems when printing such values as a single item we recommend printing out the elements one at a time as
in this example:

example

X := Interpolate(Pts,Vals);
Foreach Element In X Do

PrintLn Element;
EndForeach;

Use Qlx,y];

Points := [[1/2, 21, [3/4, 41, [5, 6/111, [-1/2, -211;
Values := [1/2,1/3,1/5,-1/2];

F := Interpolate(Points, Values);

F;

-46849/834000y"2 - 1547/52125x + 13418/52125y + 46849/208500
[Eval(F,P) | P In Points] = Values; -- check

TRUE

VI-9.18 Interreduce, Interreduced

syntax

Interreduce(V:LIST of POLY):NULL
Interreduce (V:LIST of VECTOR) :NULL

Interreduced(L:LIST of POLY):LIST of POLY
Interreduced(L:LIST of VECTOR):LIST of VECTOR

where V is a variable containing a list.

Description

These functions reduce each polynomial (resp., vector) using the other polynomials (resp., vectors) as reduc-
tion rules. The process terminates when each is in normal form with respect to the others. The function
“Interreduce” takes a variable containing a list and overwrites that variable with the interreduced list. The
second returns an interreduced list without affecting its arguments.

248 Chapter VI-9. 1

Note that the definition of normal form depends on the current value of the option FullRed of the panel
GROEBNER. If FullRed is FALSE it means that a polynomial (resp., vector) is in normal form when its
leading term with respect to the current term ordering cannot be reduced. If FullRed is TRUE it means that
a polynomial (resp., vector) is in normal form if and only if each monomial cannot be reduced.

example
UnSet FullRed; -- FullRed = FALSE
Use R ::= Q[x,y,z];
Interreduced([x"3-xy~2+yz,xy,z]);
[x"3 - xy°2 + yz, xy, z]
Set FullRed; -- FullRed = TRUE (the default value)
Interreduced([x"3-xy~2+yz,xy,z]);
[xy, z, x73]
L := [x"3-xy~2+yz,xy,z];
Interreduce(lL);
L;
[xy, z, x"3]
See Also: FullRed (V-1.13 pg.143)
VI-9.19 Intersection
syntax

Intersection(E_1:LIST,....,E_n:LIST):LIST
Intersection(E_1:IDEAL,...,E_n:IDEAL) : IDEAL
Intersection(E_1:MODULE,....,E_n:MODULE) :MODULE

Description

The function “Intersection” returns the intersection of “E_1,...,E_n".

lists, it returns the elements common to all of the lists.

The coefficient ring must be a field.

NOTE: In order to compute the intersection of inhomogeneous ideals, it may be faster to use the function
“HIntersection”. To compute the intersection of ideals corresponding to zero-dimensional schemes, see the
commands “GBM” (VI-7.20 pg.219) and “HGBM” (VI-8.15 pg.230).

example

In the case where the “E_i”’s are

Use R ::= Qlx,y,2];
Points := [[0,0],[1,0],[0,1],[1,1]]; -- a list of points in the plane
I := Ideal(x,y); -- the ideal for the first point
Foreach P In Points Do

I := Intersection(I,Ideal(x-P[1]z,y-P[2]z));
EndForeach;
I; -- the ideal for (the projective closure of) Points
Ideal(y~2 - yz, x"2 - xz)
Intersection(["a","b","c"],["b","c","d"]);
["p", "c"]
It = Intersection(Ideal(x,y),Ideal(y~2,2));
TRUE

See Also: GBM (VI-7.20 pg.219), HGBM (VI-8.15 pg.230), IntersectionList (VI-9.20 pg.249), HIntersec-
tion (VI-8.23 pg.234), HIntersectionList (VI-8.24 pg.235), GBasish, and more (VI-7.18 pg.217)

VI-9.20. IntersectionList 249

VI-9.20 IntersectionList

syntax

IntersectionList(L:LIST of LIST):LIST
IntersectionList(L:LIST of IDEAL):IDEAL
IntersectionList(L:LIST of MODULE) : MODULE

Description

The function “IntersectionList” applies the function “Intersection” to the elements of a list, i.e.,
“IntersectionList([X_1,...,X_n])” is the same as “Intersection(X_1,...,X_n)".

The coefficient ring must be a field.

NOTE: In order to compute the intersection of inhomogeneous ideals, it may be faster to use the function
“HIntersectionList”

To compute the intersection of ideals corresponding to zero-dimensional schemes, see the commands “GBM”
(VI-7.20 pg.219) and “HGBM” (VI-8.15 pg.230).

example
Use R ::= Qlx,y,2];
Points := [[0,0],[1,0],[0,1],[1,1]]; -- a list of points in the plane
IntersectionlList ([Ideal(x-P[1]z, y-P[2]z) | P In Points]);

Ideal(y~2 - yz, x"2 - xz)
Intersection(["a" , np" , "C"] , [nbn , nen s "d"]) ;
[“b", "C"]

IntersectionList([Ideal(x,y),Ideal(y"2,2)]);
Ideal(yz, xz, y~2)

See Also: IdealOfProjectivePoints (VI-9.5 pg.240), IdealOfPoints (VI-9.4 pg.239), HGBM (VI-8.15
pg.230), Hlntersection (VI-8.23 pg.234), HIntersectionList (VI-8.24 pg.235), Intersection (VI-9.19 pg.248)

VI-9.21 Inverse

Inverse(X:0BJECT) : 0BJECT

syntax

Description

This function computes the multiplicative inverse of its argument. It is included for use when writing Inverse(X)
comes more naturally than writing “X~(-1)”, though both notations are functionally equivalent.

example
Inverse(Mat ([[1,2], [3,411));
Mat ([
[-2, 11,
[3/2, -1/2]
D
VI1-9.22 10.SprintTrunc
syntax

I0.SprintTrunc (E:0BJECT,N:INT) : STRING

250 Chapter VI-9. 1

Description

This function works like “Sprint” (VI-19.18 pg.338), turning the value of the expression E into a string, but if
the string has length greater than N-1, it is truncated and the string “...” is concatenated. This function is
useful in formatting reports of results.

example

Use R ::= Qlx,y];

I := Ideal(x,y);
I0.SprintTrunc(I,4);
Idea...

See Also: Format (VI-6.14 pg.207), Sprint (VI-19.18 pg.338)

VI-9.23 Iroot

Iroot(N:INT, R: INT):INT

syntax

Description

This function computes the R-th root of an integer. If the argument is not a perfect R-th power it returns the
integer part of the root.

example
Iroot (25, 2);
5
Iroot (99, 3);
4
Iroot(-1, 3);
-1
See Also: ILogBase (VI-9.8 pg.242)
VI1-9.24 IsAntiSymmetric
syntax

IsAntiSymmetric(M: MAT): BOOL

Description

This function tests whether the square matrix M is anti-symmetric.

example
M := Mat([
o, 1, 21,
[-1, 0, 3],
[-2, -3, 0]
IDK
IsAntiSymmetric (M) ;
TRUE

See Also: IsSymmetric (VI-9.40 pg.256)

VI-9.25. IsDefined 251

VI-9.25 IsDefined

IsDefined(E)

syntax

where E is a CoCoA expression.

Description

This function returns TRUE if E is defined, otherwise it returns false. Typically, it is used to check if a name

has already been assigned.

NOTE: this function used to be named “Defined”.
example

IsDefined (MyVariable) ;
FALSE

MyVariable := 3;
IsDefined (MyVariable) ;
TRUE

VI-9.26 IsDiagonal

syntax

IsDiagonal (M: MAT): BOOL

Description

This function tests whether the square matrix M is diagonal.
example

M := Mat([
(o, 1, 21,
[-1, o, 31,
[-2, -3, 0]
1;
IsDiagonal (M) ;
FALSE

See Also: IsSymmetric (VI-9.40 pg.256), DiagonalMat (VI-4.16 pg.190)

V1-9.27 IsEven, IsOdd

syntax

IsEven(N:INT) :BOOL
Is0dd(N:INT) :BOOL

Description
These functions test whether an integer is even or odd.
example
IsEven(3);
FALSE
Is0dd(3);

TRUE

252 Chapter VI-9. 1

See Also: IsZero (VI-9.44 pg.258)

VI-9.28 IsHomog

syntax
IsHomog(F:POLY or VECTOR) :BOOL

IsHomog (L:LIST) :BOOL

IsHomog(I:IDEAL or MODULE) :BOOL

Description

The first form of this function returns TRUE if F is homogeneous. The second form returns TRUE if every
element of L is homogeneous. Otherwise, they return FALSE. The third form returns TRUE if the ideal/module
can be generated by homogeneous elements, and FALSE if not. Homogeneity is with respect to the first row of
the weights matrix.

example
Use R ::= Q[x,y];
IsHomog(x"2-xy) ;
TRUE
IsHomog (x-y~2) ;
FALSE
IsHomog([x~2-xy,x-y"21);
FALSE
Use R ::= Q[x,y],Weights(Mat([[2,3],[1,2]11));
IsHomog(x"3y"2+y~4);
TRUE
Use R ::= Qlx,y];
IsHomog(Ideal (x~2+y,y));
TRUE

See Also: Deg (VI-4.5 pg.184), MDeg (VI-13.10 pg.278), Weights Modifier (IV-8.5 pg.105)

VI-9.29 IsIn

E IsIn F

syntax

where E and F are CoCoA objects. For a precise description of
allowable objects, see the full online help entry.

Description

The semantics of IsIn is explained in the following table:

| POLY IsIn IDEAL checks for ideal membership.

| VECTOR IsIn MODULE checks for module membership.

| OBJECT IsIn LIST checks if the list contains the object.

| STRING IsIn STRING checks if the first string is a substring
| of the second one.

IsIn operator

VI-9.30. IsLexSegment 253

VI-9.30 IsLexSegment

syntax

IsLexSegment (I: MONOMIAL IDEAL): BOOL

Description

This function tests whether the monomial ideal I is a lex-segment ideal.
example

Use R ::= Qlx,y,z];
I := Ideal(xy~3, y 4, x°3, x"2y, x722);
IsLexSegment (I);

FALSE

See Also: IsStable (VI-9.37 pg.255), IsStronglyStable (VI-9.38 pg.255)

VI-9.31 IsNumber

IsNumber (E:0BJECT) : BOOL

syntax

Description

This function returns TRUE if E has type INT, RAT, or ZMOD. Otherwise, it returns FALSE.
example

Use R ::= Qlx,y];
IsNumber (x+y) ;
FALSE
IsNumber(3);

TRUE

IsNumber (3%5) ;
TRUE

VI-9.32 IsPositiveGrading

syntax

IsPositiveGrading (M:MAT) :BOOL

Description

This function determines whether a matrix defines a positive grading, i.e. foreach column the first nonnegative

entry is positive.
example

IsPositiveGrading(LexMat(5));

TRUE

IsPositiveGrading(Mat([[0,2,3], [1, -1, 011));
TRUE

IsPositiveGrading(Mat([[1,1], [0,-1], [-1, 0]11));
TRUE

See Also: HilbertSeriesMultiDeg (VI-8.21 pg.233), PositiveGrading4 (VI-16.12 pg.309)

254 Chapter VI-9. 1

VI-9.33 IsPPrime

IsPPrime(N:INT) :BOOL

syntax

Description

This function returns TRUE if its integer argument passes a fairly stringent primality test; otherwise it returns
FALSE. There is a very small chance of the function returning TRUE even though the argument is composite;
if it returns FALSE, we are certain that the argument is composite. Some people call it a compositeness test.

example
IsPPrime(2);
TRUE
IsPPrime(1111111111111111111);
TRUE
[N In 1..1111 | IsPPrime((10°N-1)/9)]; -- only five values are known
[2, 19, 23, 317, 1031] -- next might be 49081

See Also: IsPrime (VI-9.34 pg.254), NextPPrime (VI-14.5 pg.289)

VI1-9.34 IsPrime

IsPrime(N:INT) :BOOL

syntax

Description

This function determines whether a small integer is prime. The range of permitted values for N is the same the
range of permitted values for the NextPrime function: on most platforms N < 45000 should work fine, on some
platforms considerably larger values will work. For N greater than the limit an error is raised.

example

IsPrime(32003);

TRUE

IsPrime(107100);

ERROR: IsPrime: number too large

CONTEXT: Return(Error("IsPrime: number too large"))

See Also: IsPPrime (VI-9.33 pg.254), NextPrime (VI-14.6 pg.289)

VI1-9.35 Isqrt

syntax

Isqrt (N:INT):INT

Description

This function computes the square root of an integer. If the argument is not a perfect square it returns the
integer part of the square root.
example

Isqrt(16);

VI-9.36. IsServerReady 255

Isqrt(99);

Isqrt(-1);
ERROR: Expected non-negative INT
CONTEXT: Isqrt(-1)

VI-9.36 IsServerReady

syntax

IsServerReady(): BOOL

Description

This function tests whether the CoCoAServer is running. This may cause a harmless error message in the

CoCoAServer window.

example
IsServerReady() ;
TRUE
See Also: CoCoAServer (IV-14 pg.135)
VI-9.37 IsStable
syntax

IsStable(I: MONOMIAL IDEAL): BOOL

Description

This function tests whether the monomial ideal I is stable.
example

Use R ::= Qlx,y,z];
I := Ideal(xy~3, y 4, x73, x"2y, x722);
IsStable(I);

TRUE

See Also: IsLexSegment (VI-9.30 pg.253), IsStronglyStable (VI-9.38 pg.255)

VI1-9.38 IsStronglyStable

syntax

IsStronglyStable(I: MONOMIAL IDEAL): BOOL

Description

This function tests whether the monomial ideal I is strongly stable (Borel-fixed in characteristic 0).

example

Use R ::= Q[x,y,z];
I := Ideal(xy~3, y 4, x°3, x"2y, x722);
IsStronglyStable(I);

TRUE

See Also: IsLexSegment (VI-9.30 pg.253), IsStable (VI-9.37 pg.255)

256 Chapter VI-9. 1

VI-9.39 IsSubset

IsSubset (L:LIST,M:LIST) :BOOL

syntax

Description

This function returns TRUE is MakeSet(L) is contained in MakeSet(M); otherwise it returns FALSE.
NOTE: The obsolete function SubSet used to have the same behaviour.
example

IsSubset([1,1,2],[1,2,3,"a"]);
TRUE
IsSubset([1,2],["a","d"]);
FALSE

IsSubset([],[1,2]);

TRUE

See Also: EqSet (VI-5.3 pg.196), MakeSet (VI-13.2 pg.273), Subsets (VI-19.22 pg.340)

VI-9.40 IsSymmetric

syntax

IsSymmetric(M: MAT): BOOL

Description

This function tests whether the square matrix M is symmetric.

example
M := Mat ([
[1, 2, 31,
[2, 4, 5],
[3, 5, 6]
D;
IsSymmetric(M);
TRUE

See Also: IsAntiSymmetric (VI-9.24 pg.250)

VI-9.41 IsTerm

IsTerm(X:POLY or VECTOR) :BOOL

syntax

Description

The function determines whether X is a term. For a polynomial, a “term” is a power-product, i.e., a product of
indeterminates. Thus, xy%2 is a term, while 4xy%z and zy -+ 22> are not. For a vector, a term is a power-product
times a standard basis vector, e.g., (0, zy?z,0).

example

Use R ::= Qlx,y,z];
IsTerm(x+y~2);
FALSE

VI-9.42. IsTermOrdering 257

IsTerm(x"3yz~2);

TRUE

IsTerm(5x"3yz"2);

FALSE
IsTerm(Vector(0,0,xyz));
TRUE
IsTerm(Vector(x~2,y72));
FALSE

IsTerm(5x72);

FALSE

VI-9.42 IsTermOrdering

syntax

IsTermOrdering(M:MAT) :BOOL

Description

This function determines whether a square matrix defines a term-ordering, i.e. if its determinant is non-zero
and if foreach column the first nonnegative entry is positive.

example

IsTermOrdering(LexMat(5));

TRUE

IsTermOrdering (DegRevLexMat (5)) ;
TRUE

IsTermOrdering(RevLexMat (5));
FALSE

See Also: Custom Term-Orderings (IV-8.9 pg.107)

VI-9.43 IsTreeb

IsTree5(L: LIST): [BOOL,LIST]

IsTree5(L: LIST, "NOOPT"): [BOOL,LIST]
IsTree5(L: LIST, "OPT"): [BOOL,LIST]
IsTree5(L: LIST, "CS_NOOPT"): [BOOL,LIST]
IsTree5(L: LIST, "CS_OPT"): [BOOL,LIST]

syntax

Description

This function tests whether the facet complex described by the list L of square free power products is a tree,
plus a list which:

- is empty if L is a tree

- contains three elements of a cycle of L if L is not a tree.

Four options “NOOPT”,“OPT”,“CS_NOOPT”,“CS_OPT” are available as second argument, specifying different
algorithms; the default is “CS_0PT”.

258 Chapter VI-9. 1

For a full description of the algorithms we refer to the paper by M. Caboara, S. Faridi, and P. Selinger,
“Simplicial cycles and the computation of simplicial trees”, Journal of Symbolic Computation, vol.42/1-2, pp.77-
88 (2000).

example
Use R ::= Qlx,y,z,t];
D := [xy, yz, zt, tx];
IsTree5(D);

[FALSE, [xy, xt, ytl]

IsTree5([xy, yz, ztl);
[TRUE, [11

See Also: Introduction to CoCoAServer (IV-14.1 pg.135)

VI1-9.44 IsZero

IsZero(X:0BJECT) :BOOL

syntax

Description

This function tests whether its argument is zero; the argument can be of almost any type for which “zero”
makes sense.
example

IsZero(23);
FALSE

IsZero(3-3);

TRUE
Use R ::= Q[x,y];
IsZero(x"2+3y-1);
FALSE

IsZero(Ideal (x"2,xy"3));
FALSE
IsZero(Vector(0,0,0));
TRUE

See Also: IsEven, IsOdd (VI-9.27 pg.251)

Chapter VI-10

J

VI-10.1 Jacobian

Jacobian(L:LIST) :MAT

syntax

where L is a list of polynomials.

Description

This function returns the Jacobian matrix of the polynomials in L with respect to all the indeterminates of the
current ring.
example

Use R ::= Qlx,y];
L := [x-y,x"2-y,x"3-y"2];
Jacobian(L);

Mat ([
(1, -11,
[2x, -1],
[3x"2, -2y]
D

259

260 Chapter VI-10. J

Chapter VI-11

K

261

262 Chapter VI-11. K

Chapter VI-12

L

VI-12.1 Last

Last(L:LIST) :0BJECT
Last(L:LIST,N:INT) :0BJECT

syntax

Description

In the first form, the function returns the last element of L. In the second form, it returns the list of the last N
elements of L.
example

L :=[1,2,3,4,5];
Last(L);

Last(L,3);
[3, 4, 5]

See Also: First (VI-6.6 pg.203), Head (VI-8.13 pg.229), Tail (VI-20.3 pg.346)

VI-12.2 Latex
syntax

Latex (X:0BJECT) : TAGGED(" ¢ ‘\verb&$latex.Latex&’’")

Description

This function returns its argument in a format suitable for inclusion in a LaTeX document.

example
Use R ::= Q[x,y,z];
F = x"3+2y72z;
Latex(F);

x"{3} + 2y"{2}z

M := Mat([[1,2],[3,411);
Latex(M) ;

\left(\begin{array}{11}
1 & 2 \\

3 & 4 \end{array}\right)

263

264 Chapter VI-12. L

F := (x+y)/(1-2)"3;

Latex(F);

\frac{ - x - yHz"{3}-3z"{2} + 3z-1}
Latex(Ideal(x"2,y+2));

C\ x~{23},

y +z\)

See Also: Format (VI-6.14 pg.207), Sprint (VI-19.18 pg.338)

VI-12.3 LC

LC(F:POLY or VECTOR):C

syntax

where C is one of INT, RAT, or ZMOD.

Description

This function returns the leading coefficient of F, as determined by the term-ordering of the ring to which F
belongs.

example
Use R ::= Qlx,y]l;
LC(x+3x"2-5y72);
3

See Also: Coefficients (VI-3.15 pg.175), CoeffOfTerm (VI-3.16 pg.176), LT (VI-12.16 pg.270)

VI-12.4 LCM

syntax

LCM(F_1:INT,...,F_n:INT):INT

LCM(L:LIST of INT):INT

LCM(F_1:POLY,...,F_n:POLY):POLY

LCM(L:LIST of POLY):POLY

Description

This function returns the least common multiple of “F_1,...,F_n” or of the elements in the list L. For the

calculation of the GCDs and LCMs of polynomials, the coefficient ring must be a field.
example

Use R ::= Qlx,y];

F = x"2-y72;

G := (x+y)~3;

LCM(F,G);

1/4x~4 + 1/2x73y - 1/2xy"3 - 1/4y~4
4 x It = G * (x-y);
TRUE

VI-12.5. Len 265

LCM(3%4,3%8,6%16) ;
96
LCM([3%4,3%8,6%16]) ;
96

See Also: Div (VI-4.21 pg.192), Mod (VI-13.17 pg.281), GCD (VI-7.21 pg.220)

VI-12.5 Len

Len(E:0BJECT) : INT

syntax

Description

This function returns the “length” of an object, as summarized in the table below:

RATFUN | if E=F/G, then Len(E)=Len(F)+Len(G)
VECTOR | number of components

| type | length
___ |
| IDEAL | length of Gens(E)

| INT | 1 |
| LIST | number of items in the list

| MAT | number of rows of the matrix |
| MODULE | length of Gens(E)

| POLY | number of monomials

| |
| |

The operator ‘‘\verb&Len&’’

example
Use R ::= Qlx,y];

L :=["a",2,3,[4,5]];

Len(L);

The function “Size” (VI-19.9 pg.333) returns the amount of memory used by the object.
See Also: Count (VI-3.25 pg.180), Size (VI-19.9 pg.333)

266 Chapter VI-12. L

VI-12.6 LexMat

LexMat (N: INTEGER) :MAT

syntax

Description

This function return the matrix defining a standard term-ordering. These functions return matrices defining
standard term-orderings.

example

LexMat (3);
Mat ([
[1, o0, 0],
[0, 1, 0],
[0, 0, 1]

See Also: Ord (VI-15.8 pg.302), Orderings (IV-8.6 pg.106), DegLexMat (VI-4.6 pg.184), DegRevLexMat
(VI-4.7 pg.185), RevLexMat (VI-18.21 pg.325), XelMat (VI-24.1 pg.361)

VI-12.7 LinearSimplify

syntax

LinearSimplify(F:POLY) : [POLY,POLY]

Description

This function returns a list of two polynomials [G,L] where L is linear and G is simple (in a heuristic sense).
The composition G(L) is equal the univariate polynomial given to LinearSimplify.

example
Use Qlx];
LinearSimplify ((123*x-456)"9-1);
[x"9 - 1, 123x - 456]
LinearSimplify(x~9-1); -- the heuristic finds no useful simplification
[x79 - 1, x]

VI-12.8 LinKer
syntax

LinKer (M:MAT) :LIST
LinKerModP (M:MAT) :LIST

where M is a matrix over Q or Z.

Description

The first function returns a list whose components are lists representing a Z-basis for the kernel of M. Calling
the function twice on the same input will not necessarily produce the same output, though in each case, a basis
for the kernel is produced.

The second function returns a list whose components are lists representing a basis for the kernel of M over
the current field of coefficients.

VI-12.9. LinSol 267

example
M := Mat([[1,2,3,4],[5,6,7,8],[9,10,11,12]11);
LinKer (M) ;
(re, -1, -1, 11, [0, 1, -2, 1]]
M*Transposed (Mat (It));
Mat ([

(o, o1,

fo, o],

[0, 0]

Use Z/(3) [x];
LinKerModP (M) ;
[[1; 1: 1’ 0]: [0’ _1, _1: _1]]

M*Transposed (Mat (It));

Mat ([
(o, ol,
[o, ol,
[0, 0]

See Also: LinSol (VI-12.9 pg.267)

VI-12.9 LinSol

LinSol (M:MAT,L:LIST) :LIST

syntax

where M is an m x n matrix over Z or , and L is a list of length m
with entries in Z or Q (or a list of such lists).

Description

This function finds a solution to the inhomogeneous system of equations represented by M and L. Specifically, it
returns a list, X, of length n with entries in Z or Q, such that M*Transposed(Mat(X)) = Transposed(Mat([L])),
if such X exists; otherwise, it returns the empty list. Once a solution is found, all solutions may be found using
the function “LinKer”.

NOTE: “LinSol” (VI-12.9 pg.267) can solve several inhomogeneous systems at once. If L has the form
[L1, ..., L] where each L; is a list of length m with entries in Z or Q, then LinSol(M,L) returns a list [X1, ..., X]
where X is a solution to the system of linear equations represented by M and L;.
example

M := Mat([[3,1,4]1,[1,5,9],[2,6,511);
L := [123,456,789];
LinSol(M,L);
[199/5, T742/5, -181/5]
M*Transposed (Mat ([It]));
Mat ([
[123],
[456],
[789]

268 Chapter VI-12. L

LinSol (M, [L, [1,2,3]11);
[[199/5, 742/5, -181/5], [4/15, 7/15, -1/15]]

See Also: LinKer (VI-12.8 pg.266)

VI-12.10 List

List (E:0BJECT) :LIST

syntax

where E has type LIST, MAT, or VECTOR.

Description

This function converts the expression E into a list. It is the same as Cast(E,LIST).

example

Use R ::= Qlx,y]l;
M := Jacobian([x"2y~2,x+yl);
M;
Mat ([

[2xy~2, 2x"2y],

[1, 1]
D
Head (M) ;

ERROR: Bad parameters
CONTEXT: Head(M)

Head (List (M));
[2xy~2, 2x"2y]

The error occurs because the function “Head” (VI-8.13 pg.229) only accepts lists as arguments.
See Also: NewList (VI-14.2 pg.288)

VI-12.11 LM

LM(P:POLY or VECTOR):same type as P

syntax

Description

This function returns the leading monomial of P. The monomial includes the coefficient. To get the leading
term of P, (which does not included the coefficient), use “LT” (VI-12.16 pg.270).

example
Use R ::= Qlx,y];
LM(3x"2y+y) ;
3x"2y

LM(Vector (2x,y));
Vector(2x, 0)

LT (Vector(2x,y));

VI-12.12. Log 269

Vector(x, 0)

See Also: LC (VI-12.3 pg.264), LPP (VI-12.15 pg.270), LT (VI-12.16 pg.270)

VI-12.12 Log

syntax

Log(F:POLY) :LIST

Description

This function returns the list of exponents of the leading term of F.
example

Use R ::= Qlx,y,z];

F := x"3y"2z"5+x"2y+xz"4;
Log(F);

[3, 2, 5]

See Also: ILogBase (VI-9.8 pg.242), LT (VI-12.16 pg.270), LogToTerm (VI-12.13 pg.269)

VI-12.13 LogToTerm

syntax
LogToTerm(L:LIST) :POLY

where L is a list of integers.

Description

This function returns the power-product whose list of exponents is L.

example
Use R ::= Q[x,y,z];
LogToTerm([2,3,51);
x"2y~3z"5
Log(It);
[2, 3, 5]
See Also: Log (VI-12.12 pg.269)
VI-12.14 LPos
syntax

LPos(V:VECTOR) : INT

Description

This function returns the position of the leading power-product of V.
example
Use R ::= Q[x,y],ToPos; -- ToPos is the default module term-ordering
LT (Vector(x,y"2));

Vector (0, y~2)

270 Chapter VI-12. L

y©2

Use R ::= Q[x,y],PosTo;
LT (Vector(x,y~2));
Vector(x, 0)

See Also: LM (VI-12.11 pg.268), LPP (VI-12.15 pg.270), LT (VI-12.16 pg.270)

VI-12.15 LPP

LPP(P:POLY or VECTOR):POLY

syntax

Description

This function returns the leading power-product of P.

example

Use R ::= Q[x,y];
LPP(3x"2y+y); -- LPP is the same as LT for polynomials

x"2y

LT(Vector(2x,y)); -- Note the difference between LPP and LT
-- for vectors.
Vector(x, 0)

See Also: LC (VI-12.3 pg.264), LM (VI-12.11 pg.268), LT (VI-12.16 pg.270)

VI-12.16 LT

syntax

LT(E) :same type as E

where E has type IDEAL, MODULE, POLY, or VECTOR.

Description

If E is a polynomial this function returns the leading term of the polynomial E with respect to the term-ordering
of the polynomial ring of E. For the leading monomial, which includes the coefficient, use “LM” (VI-12.11 pg.268).

VI-12.16. LT 271

example
Use R ::= Q[x,y,z]; -- the default term-ordering is DegRevLex
LT(y"2-x2) ;
y~2
Use R ::= Qlx,y,z], Lex;
LT(y~2-x2);
Xz

If E is a vector, LT (E) gives the leading term of E with respect to the module term-ordering of the polynomial
ring of E. For the leading monomial, which includes the coefficient, use “LM” (VI-12.11 pg.268).

example
Use R ::= Q[x,y];
V := Vector(0,x,y"2);
LT(V); -- the leading term of V w.r.t. the default term-ordering, ToPos
Vector(0, 0, y~2)
Use R ::= Q[x,y], PosTo;
V := Vector(0,x,y"2);
LT(V); -- the leading term of V w.r.t. PosTo
Vector (0, x, 0)

If E is an ideal or module, LT(E) returns the ideal or module generated by the leading terms of all elements
of E, sometimes called the “initial’ ideal or module.

example
Use R ::= Q[x,y,z];
I := Ideal(x-y,x-z2"2);
LT(D);

Ideal(x, z"2)

See Also: LC (VI-12.3 pg.264), LM (VI-12.11 pg.268), LPP (VI-12.15 pg.270), Module Orderings (IV-8.10
pg.108), Orderings (IV-8.6 pg.106), GBasis5, and more (VI-7.18 pg.217)

272 Chapter VI-12. L

Chapter VI-13

M

VI-13.1 MakeCheck

MakeCheck ()

syntax

Description

This function run a series of tests on the whole system. To get a reliable result you should run this on a
“just opened” CoCoA because some printouts may mysteriously add some empty spaces which will result in an,
apparent, failure of some tests.

You should start “CoCoAServer” (IV-14 pg.135) to test the whole system.
example

MakeCheck () ;

VI-13.2 MakeSet

MakeSet (L:LIST) :LIST

syntax

Description

This function returns a list obtained by removing duplicates from L. It used to be called “Set”, but this is
deprecated for the abiguity with the command named “Set-Unset” (VI-19.6 pg.332) for setting panel options.

example

MakeSet([2,2,2,1,2,1,1,3,3]);
[2, 1, 3]

WARNING: to test two sets for equality use the function “EqSet” (VI-5.3 pg.196) instead of a normal
equality test (because the latter yields false if the elements are in a different order).

See Also: EqSet (VI-5.3 pg.196), Intersection (VI-9.19 pg.248), IntersectionList (VI-9.20 pg.249), Insert
(VI-9.16 pg.246), Remove (VI-18.13 pg.321)

VI-13.3 Man

7 key
7?7 key
where ‘‘{\it keyl}’’ is a literal string (without quotes)

syntax

Man (S:STRING) :NULL
Man (S:STRING,N:INT) :NULL

273

274 Chapter VI-13. M

where N = 0 or 1.

Description

The “Man” function is used to search the online help system for information matching a keyword.

In the forms “?key” and “?7key”, the “key’ is a literal string. This means that “key” should not appear
enclosed in quotes. For instance, “?gbasis” is equivalent to “Man("gbasis");”. The command “?” is case
insensitive and does not notice blank space before or after “key”. Also, the semicolon usually required at the
end of a line of CoCoA input is optional. (“?” was introduced in CoCoA 4.2)

The online help contains a manual and a list of commands. Each section of the manual and each command has
an associated list of keywords. To explain how the search system works, we will use the following terminology:
say the key S “matches’ a keyword K if S is a substring of K, not counting capitalization. The key S is an
“exact match” if it is identical to K, not counting capitalization. The command “?S8” searches for keywords in
the online help system matching the S. If only one match occurs or an exact match occurs, the corresponding
information is displayed. Otherwise, if more than one match occurs (and no exact match), matching keywords
are listed. It is often advisable to make search words small at first to get as many matches as possible.

example

7po
See:
Commands and Functions for Polynomials
DensePoly
EquilsoDec
Evaluation of Polynomials
Factoring Polynomials

--> Output suppressed <--

?for poly

The following are commands and functions for polynomials:

--> Output suppressed <--

Intelligent choice of the string S can save a lot of typing. For example, there are many sections in the manual
whose titles begin: “Commands and Functions for”; in the example above, we matched the corresponding section
for polynomials by choosing the search string “for poly”.

The command “?7S” displays all keywords in the online help system that match S (an exact match is not
required, and *all* keywords are listed even if there is an exact match).

example

?7gbasis

See:
GB.Start_GBasis
GBasis
ReducedGBasis

Typing “?gbasis”, with a single question mark produces only the manual entry for “GBasis”.

The function “Man” is equivalent to “?” except it requires an actual string, e.g., “Man("gbasis")” rather
than “Man(gbasis)”. “Man” with the optional second argument set to the number 0 is equivalent to “??”. Since
“Man” requires more typing than “?”, there should never be a need to use it.

VI-13.4. MantissaAndExponent 275

Note: The set of keywords associated with any section of the manual always includes the title of the manual,
so it might help to first take a look at the table of contents, using “H.Toc”. (The titles of Parts, which are
numbered by “H.Toc” do *not* appear as keywords: only titles of chapters and sections.) Similarly, the set of
keywords for a command always includes the command’s name. The complete list of documented commands
can be printed by entering “H.Commands("")”.

See Also: H.Commands (VI-8.2 pg.225), H.Syntax (VI-8.7 pg.227), Shortcuts (VI-0.1 pg.155)

VI-13.4 MantissaAndExponent

syntax
MantissaAndExponent (X:RAT, Prec:INT):RECORD

Description

This function converts a rational number into a Record with components named Mantissa and Exponent. The
value of the Exponent field is the unique integer E such that 1 < X * 10F < 10, and the value of Mantissa is
the nearest integer to (X * 10%) x 10(Prec — 1). As an exception the case of X=0 always produces zero values
for both components of the record.

example
FloatStr(1/2); -- trailing zeroes are not suppressed
5.000000000%10~ (-1)
MantissaAndExponent(1/2,3); -- 1/2 = 5.00%10°(-1)
Record [Exponent = -1, Mantissa = 500]
MantissaAndExponent (0.9999, 3); -- 0.9999 rounds up to give 1.00
Record[Exponent = 0, Mantissa = 100]

See Also: DecimalStr (VI-4.3 pg.181), FloatApprox (VI-6.10 pg.205), FloatStr (VI-6.11 pg.205)

VI-13.5 MapDown

syntax

MapDown (F:POLY) :RAT or ZMOD

Description

This function converts a constant polynomial to the equivalent coefficient. If the argument is not a constant
polynomial, an error is signalled.

example
Use Qlx,y,2z];
Type ((x+1) "2 - x*(x+2)); -- value is seen as a polynomial
POLY
MapDown ((x+1) "2 - x*(x+2)); -- attempt to map down to the coeff ring
1
Type(It); -- value is now simply a coefficient
RAT
MapDown ((x+1) "2 - x72); -— 2*x + 1 is not a coefficient
ERROR: Cannot MapDown non-const poly
CONTEXT: Error("Cannot MapDown non-const poly")

276 Chapter VI-13. M

VI-13.6 Mat

Mat (E) :MAT
Mat [E] :MAT -- deprecated!

syntax

where E is either: a ‘‘{\it rectangular}’’ lists of lists, a vector, or a
module.

Description

This function converts the expression E into a matrix. The first form is equivalent to Cast(E,MAT).

example

Use R ::= Q[x,y];
L := [[1,2],(3,4]11;
Mat (L) ;
Mat ([
(1, 21,
[3, 4]

M := Module([x,x"2,y], [x"2,y,0]1);
Mat (M) ;
Mat ([

[x, x°2, y],

[x~2, y, 0]

Mat ([[1,2],[3,4]11);
Mat ([

1, 21,

[3, 4]

Mat[[1,2],[3,4]1]; -- only square brackets: deprecated!
Mat ([

1, 21,

[3, 4]

Mat([["a","b"],["c",[1,2]]]); -- a slightly more obscure example
Mat([["d","e"] , [nfu, [3’4]]]);

= =
o

M+N;

Mat ([
[uadu s "be"] s
["cf", [4, 6]]

See Also: BlockMatrix (VI-2.7 pg.166), NewMat (VI-14.3 pg.288)

VI-13.7 MatConcatHor

syntax

MatConcatHor (A:LIST,MAT, B:LIST,MAT) :MAT

where A and B have the same number of rows

VI-13.8. MatConcatVer 277

Description

This function creates a simple block matrix. The two entries are matrices (or lists cast-able to a matrix) with
the same number of rows. MatrixConcatHor(A,B) will return a matrix of the form

| AB |
example

A
B :

[[1,2,3], [4,5,6]];
[[101,102], [103,1041];

MatConcatHor (A,B);

Mat ([
[1, 2, 3, 101, 102],
[4, 5, 6, 103, 104]

See Also: BlockMatrix (VI-2.7 pg.166), MatConcatVer (VI-13.8 pg.277)

VI-13.8 MatConcatVer

MatConcatVer (A:LIST,MAT, B:LIST,MAT) :MAT

syntax

where A and B have the same number of columns

Description

This function creates a simple block matrix. The two entries are matrices (or lists cast-able to a matrix) with
the same number of columns. MatConcatVer(A,B) will return a matrix of the form

| A |
| B |

example
A
B :

(f1,2,31, [4,5,611;
[[101,102,1031];

MatConcatVer (A,B);
Mat ([

[1, 2, 31,

(4, 5, 6],

[101, 102, 103]

See Also: BlockMatrix (VI-2.7 pg.166), MatConcatHor (VI-13.7 pg.276)

VI-13.9 Max, Min

syntax

Max(E_1:0BJECT,...,E_n:0BJECT) : OBJECT
Min(E_1:0BJECT,...,E_n:0BJECT) : 0BJECT

Max (L:LIST) :0BJECT
Min(L:LIST) :0BJECT

278 Chapter VI-13. M

Description

In the first form, these functions return a maximum and minimum, respectively, of E1, ..., E,. In the second
form, they return a maximum and minimum, respectively, of the objects in the list L.

example
Max([1,2,3]1);
3
Max(1,2,3);
3
Min(1,2,3);
1
Use R ::= Q[x,y,z];
Max(x"3z, x"2y°2); -- x"2y"2 > x"3z in the default ordering, DegRevLex
x"2y"2
Min(x~3z, x"2y°2);
x"3z
Use R ::= Q[x,y,z], Deglex;
Max(x"3z, x"2y"2); -- x"3z > x"2y"2 in Deglex
x"3z
Max(Ideal(x),Ideal(x"2),Ideal(x,y),Ideal(x-2,y-1)); -- ordered by inclusion
—-- a maximal element in the list is returned
Ideal(x, y)

See Also: Relational Operators (I11-3.3 pg.52)

VI-13.10 MDeg

syntax

MDeg(F:POLY) :LIST

Description

This function returns the multi-degree of F, as determined by the weights of the polynomial ring of F. The
function “Deg” (VI-4.5 pg.184) returns the weight given by only the first row of the weights matrix.

NB: In CoCoA-5 will me managed differently to allow more flexibility.
example

Use R ::= Qlx,y], Weights(Mat([[1,2],[3,4],[5,611));
MDeg (x) ;
[1, 3, 5]
MDeg (y) ;
[2, 4, 6]

MDeg(x~2+y) ;
(2, 6, 10]

See Also: Deg (VI-4.5 pg.184), Weights Modifier (IV-8.5 pg.105), PositiveGrading4 (VI-16.12 pg.309)

VI-13.11. Memory 279

VI-13.11 Memory

syntax
Memory () : TAGGED ("Memory")

Memory (R:RING) : TAGGED ("Memory")

Description

The first form of this function prints the contents of the working memory, i.e, all non-global variables. The
second form lists all global variables bound to the ring R.

For more information about memory in CoCoA, see the chapter entitled “Memory Management” (III-8
pg.67).

example

Use R ::= Qlx,y,2];
I := Ideal(x-y~2,xy-z"3);
X := 14;
ENV.R.Y := 5; -- a global variable bound to R

-- recall that "ENV.R" is equivalent to "MEMORY.ENV.R"
Use S ::= Q[a,b]l;
J := Ideal(a,b);
ENV.S.Z :=7;
Memory () ;

[IIIII, IIJII’ lIXIl]

Memory (R) ;
[llYll]

See Also: GlobalMemory (VI-7.30 pg.224), Memory Management (I1I-8 pg.67)

VI-13.12 MinGens
syntax

MinGens (M:IDEAL or MODULE or TAGGED("Quotient")):LIST

Description

If M is an ideal or module, this function returns a list of minimal generators for M. If M is the quotient of a
polynomial ring by an ideal I or the quotient of a free module by the submodule N, then MinGens returns a set
of minimal generators for I or N, respectively.

The coefficient ring must be a field.

The input must be homogeneous. The similar command “Minimalized” (VI-13.14 pg.280), will accept
inhomogeneous input.

example
Use R ::= Q[x,y,z];
I := Ideal(x-y, (x-y) 4,z+y, (z+y)"2);
I;

Tdeal(x - y, x74 - 4x73y + 6x72y"2 - 4xy°3 + y°4, y + z, y°2 + 2yz + z72)
MinGens(I);

[y + 2z, x + 2]

MinGens (R/I);

[y + z, x + 2]

M :=Module([x+y,x-y]l, [(x+y) "2, (x+y) (x-y)1);

MinGens (M) ;

280 Chapter VI-13. M

[Vector(x + y, x - y)]

MinGens (R"2/M) ;
[Vector(x + y, x - y)]

See Also: Minimalize (VI-13.13 pg.280), Minimalized (VI-13.14 pg.280)

VI-13.13 Minimalize

Minimalize(X:IDEAL) :NULL
Minimalize (X:MODULE) : NULL

syntax

where X is a variable containing an ideal or module.

Description

In the inhomogeneous case it removes redundant generators from the ideal or module contained in X, storing
the result in X, i.e. the original ideal or module is overwritten.

In the homogeneous case, it obtains a generating set with smallest possible cardinality. The minimal set
of generators found by CoCoA is not necessarily a subset of the given generators. As with the inhomogeneous
case, it overwrites its argument.

The coefficient ring is assumed to be a field.

The similar function “Minimalized” (VI-13.14 pg.280) performs the same operation, but returns the mini-
malized ideal or module and does not modify the argument.

example
Use R ::= Q[x,y,z];
I := Ideal(x-y~2,z-y"5,x"5-2"2);
I;

Ideal(-y"2 + x, -y"5 + z, x"5 - 272)
Minimalize(I);

I;

Ideal(-y~"2 + x, -y~5 + z)

J := Ideal(x, x-y, y-2z, 272);
Minimalized(J);

Ideal(y - z, x - z, 2)

See Also: MinGens (VI-13.12 pg.279), Minimalized (VI-13.14 pg.280)

VI-13.14 Minimalized

Minimalized (E:IDEAL) : IDEAL
Minimalized(E:MODULE) :MODULE

syntax

where X is a variable containing an ideal or module.

Description

In the inhomogeneous case it returns the ideal or module obtained by removing redundant generators from E.

In the homogeneous case, it obtains a generating set with smallest possible cardinality. The minimal set of
generators found by CoCoA is not necessarily a subset of the given generators. It returns the minimalized ideal
or module.

VI-13.15. Minors 281

The coefficient ring is assumed to be a field.
The similar function “Minimalize” (VI-13.13 pg.280) performs the same operation, but modifies the argu-
ment and returns NULL.

example
Use R ::= Q[x,y,z];
I := Ideal(x-y~2,z-y"5,x"5-2"2);
I;

Ideal(-y"2 + x, -y"5 + z, x°5 - z72)
Minimalized(I);

Ideal(-y~"2 + x, -y°5 + z)

I;

Ideal(-y"2 + x, -y"5 + z, x"5 - z72)
Minimalize(I);

I;

Ideal(-y~"2 + x, -y~5 + z)

J := Ideal(x, x-y, y-z, z"2);
Minimalized(J);

Ideal(y - z, x - z, z)

See Also: MinGens (VI-13.12 pg.279), Minimalize (VI-13.13 pg.280)

VI-13.15 Minors

Minors(N:INT,M:MAT) :LIST

syntax

Description

This function returns the list of all determinants of N x N submatrices of M.
example

M := Mat([[1,2,3],[-1,2,4]1]);
Minors(2,M);
[4, 7, 2]

See Also: Det (VI-4.15 pg.190)

VI-13.16 MinSyzMinGens

syntax

MinSyzMinGens: FUNCTION ELIMINATED.

Description

The MinSyzMinGens function has been removed.
See Also: SyzMinGens (VI-19.28 pg.343)

VI-13.17 Mod

Mod (N:INT,D:INT) : INT

syntax

282 Chapter VI-13. M

Description

IfN=Q*D + R, and 0 < R < |D|, then “Div(N,D)” returns Q and “Mod(N,D)” returns R.

NOTE: To perform the division algorithm on a polynomial or vector, use “NR” (VI-14.11 pg.291) (normal
remainder) to find the remainder, or “DivAlg” (VI-4.22 pg.192) to get both the quotients and the remainder.
example

Div(10,3);

See Also: Div (VI-4.21 pg.192), DivAlg (VI-4.22 pg.192), GenRepr (VI-7.24 pg.221), NF (VI-14.7 pg.290),
NR (VI-14.11 pg.291)

VI-13.18 Mod2Rat
syntax

Mod2Rat (Residue:INT, Modulus:INT, DenomBound:INT) :RAT

Description

This function determines a rational number equivalent to the given residue modulo the given modulus; the
denominator will not exceed DenomBound, and the absolute value of the numerator will be at most Modu-
lus/(2*DenomBound) — this guarantees uniqueness of the answer. If no such rational exists, or if DenomBound
exceeds Modulus/2 then zero is returned. DenomBound must be positive; if not, zero is returned.

example
Mod2Rat (239094665 ,314159265,10000) ;
355/113
Residue := 1234567; -- To compute inverse of
Modulus := 27100; —-- Residue modulo Modulus,

Mod2Rat (Residue, Modulus, Div(Modulus-1,2));-- result is the denominator.
1/284507170216309247716413542199

See Also: Div (VI-4.21 pg.192), Mod (VI-13.17 pg.281)

VI-13.19 Module

Module(V_1:VECTOR,...,V_n:VECTOR) : MODULE
Module(L:LIST) :MODULE
Module(I:IDEAL) :MODULE

syntax

where L is a list of elements cast-able to vectors.

Description

The first function returns the module generated by the vectors “V_1,...,V_n". The second function returns the
module generated by the (elements cast-able to) vectors in L. The third function returns the module generated
by the generators of I. This is the same as the function “Cast (E,MODULE)”.

example

Use R ::= Qlx,y,z];
M := Module([x"2-y~3,x"3-yz],[x"3,272]);
M;

VI-13.20. Monic 283

Module([-y~3 + x°2, x°3 - yz], [x73, z"2])
L := [[-y"3 + x~2, x°3 - yz], [x"3, z"211;
Module(L) = M;

TRUE

I := Ideal(x,y"2,273);

Module(I);

Module([x], [y~2], [z"31)

See Also: Cast (VI-3.3 pg.170)

VI-13.20 Monic

Monic (F:POLY) :POLY
Monic(L:LIST of POLY):LIST of POLY

syntax

Description

In the first form, this function returns F divided by its leading coefficient (see “LC” (VI-12.3 pg.264)) or, if F is
zero, it returns zero.

In its second form, it returns the list obtained by applying the first form of Monic to each of the components
of L.

example
Use R ::= Qlx,y];
L := [4x75-y~2,3x-2y"4];
Monic (L) ;

[x"5 - 1/4y~2, y~4 - 3/2x]

Use R ::= Z[x,y];

—-— WARNING: Coeffs are not in a field

-- GBasis-related computations could fail to terminate or be wrong

L := [4x"5-y~2,3x-2y"4];
Monic(L); -- can’t invert coefficients over Z

ERROR: Cannot divide

CONTEXT: Cond(Type(X) = LIST, [Monic(A)|A IN X], IsZero(X), X, X / LC(X))
Use R ::= Z/(5) [x,y];

F := 2x72+4y~3;

Monic (F) ;

y 3 - 2x72

See Also: LC (VI-12.3 pg.264)

VI-13.21 Monomials

Monomials (F:POLY or VECTOR):LIST

syntax

284 Chapter VI-13. M

Description

This function returns the list of monomials of F. The function “Support” (VI-19.25 pg.341) returns the list of
terms (monomials without coefficients).

example

Use R ::= Qlx,y];

F := 3x"2y+by~3-xy~5;

Monomials(F) ;

[-xy~5, 3x"2y, 5y~3]

Support (F) ;

[xy"5, x"2y, y~3]

Monomials(Vector (3x~2y+y,bxy+4)) ;

[Vector(3x~2y, 0), Vector(0, 5xy), Vector(y, 0), Vector(0, 4)]

See Also: Coefficients (VI-3.15 pg.175), Support (VI-19.25 pg.341)

VI-13.22 MonsInldeal

MonsInIdeal (I:IDEAL):IDEAL

syntax

Description

This function returns the ideal generated by all monomials in the original ideal I.
example

Use R ::= Qlx,y,z];

I := Ideal(xy~3+z"2, y~5-z"3, xz-y 2-x"3, x"4-x2"2+y"3);

MonsInIdeal(I);

Ideal(z"3, yz~2, x"2z"2, x°bz, x"4yz, x"by, x"2y~2z, x°7, x"4y"2,
xy~3z, y~4z, xy~4, x"3y"3, y~b)

VI-13.23 More

More (S:STRING) : NULL
More () :NULL

syntax

Description

The purpose of this function is to print the string S without scrolling off of the screen.

The first form of this function stores the string S in a “MoreDevice”, then prints the first N lines from the
MoreDevice where N is the integer stored in the global variable MEMORY.MoreCount. Subsequent calls to
“More” print the next N lines from the MoreDevice, (each time removing the lines from the device) until the
MoreDevice is empty. After each call to “More” a line with “More();” is printed as long as the MoreDevice is
not empty. This line is easily cut-and-pasted.

The user may set the number of lines to print with the command “MEMORY.MoreCount := X”, where X is
an integer. The default is value is 20.

If E is *any* CoCoA object, the command “Sprint(E)” converts E into a string. The output may then be
given to “More” for printing.

To use the more device with the online help system, see “H.SetMore” (VI-8.6 pg.226), “H.UnSetMore”
(VI-8.11 pg.228).

See Also: H.UnSetMore (VI-8.11 pg.228), H.SetMore (VI-8.6 pg.226), Commands and Functions for
Strings (IV-3.5 pg.92)

VI-13.24. Multiplicity 285

VI-13.24 Multiplicity

syntax
Multiplicity(R:RING or TAGGED("Quotient")):INT

Description

This function computes the multiplicity (or degree) of M, i.e., the leading coefficient of the Hilbert polynomial
multiplied by the factorial of the degree of the Hilbert polynomial. The weights of the indeterminates of the
polynomial ring of M must all be 1. M can be a module or a quotient.

example
Use R ::= Q[t,x,y,z];
Multiplicity(R/Ideal(x,y,z)"5);
35

See Also: Hilbert (VI-8.16 pg.231), HilbertSeries (VI-8.20 pg.232), HVector (VI-8.27 pg.236), Poincare
(VI-16.8 pg.307)

286 Chapter VI-13. M

Chapter VI-14

N

VI-14.1 Newld

NewId() :STRING

syntax

Description

This function returns a string of the form “V#N” where N is an integer. Each time it is called, the integer N
changes, producing a new string. The purpose is to produce identifiers for variables or rings. (CoCoA does not
check for the unlikely event that variables of the same form have been defined without the use of “NewId”.) The
function “NewId” is often used with “Var” (VI-22.1 pg.355).

The most important use for this function is for creating temporary rings within user-defined functions. For
an example, see the section of the tutorial entitled “Rings Inside User-Defined Functions” (1I-2.18 pg.35).

example
NewId();
V#0
NewId();
V#1
X := NewId();
X;
V#2
Var(X) := 3;

Var (NewId()) := 4;
Describe Memory();

———————————— [Memory] ———-—------
It = V#2

V#2 = 3

V#3 = 4

X = V#2

Y := NewId();

Var(Y) ::= Q[a,b];

Use Var(Y);

RingEnvs () ;
[HQII’ lthll’ llRII’ I|V#6l|, ||Zl|]

287

288 Chapter VI-14. N

See Also: Rings Inside User-Defined Functions (II-2.18 pg.35), Var (VI-22.1 pg.355)

VI-14.2 NewlList

syntax

NewList (N:INT) :LIST
NewList (N:INT,E:0BJECT)

Description

The second function returns a list of length N, filled by E. The first function, in which E is not indicated, returns
a list of length N filled with “Null” values.

example

NewList(4,"a");

[“all, llall, llall, llall]
NewList (4);

[Null, Null, Null, Null]

See Also: List (VI-12.10 pg.268)

VI-14.3 NewMat

syntax

NewMat (M:INT,N:INT) :MAT
NewMat (M: INT,N:INT,E:0BJECT) : MAT

Description

The second function returns an MxN matrix, filled by E. The first function, in which E is not indicated, returns
an MxN matrix filled with ”Null” values.

example
NewMat(2,3,"a");
Mat ([
[llall , llall , Ilall] s
[Ilall , Ilall , Ilall]
D

NewMat (2,2);
Mat ([
[Null, Null],
[Null, Null]

See Also: Mat (VI-13.6 pg.276)

VI-14.4. New Vector 289

VI-14.4 NewVector

NewVector (N:INT) : VECTOR
NewVector (N:INT,E:0BJECT) : VECTOR

syntax

where E is cast-able to POLY.

Description

The second function returns a vector of length N, each of whose components is E. The first function, in which
E is not indicated, returns a vector of length N filled with zeros.

example
Use R ::= Q[x,y];
NewVector(4) ;
Vector (0, 0, 0, 0)
NewVector(3,x"2+y);
Vector(x™2 +y, x°2 +y, x°2 + y)
See Also: Vector (VI-22.2 pg.356)
VI-14.5 NextPPrime
syntax

NextPPrime (N:INT) : INT

Description

This function computes the smallest probable prime number greater than N. If N is negative an error is generated.

This function can generate primes larger than permitted as the characteristic of a finite field in CoCoA.
example

NextPPrime (1000) ;

1009

NextPPrime (10°50) ;
1000151

See Also: IsPPrime (VI-9.33 pg.254), NextPrime (VI-14.6 pg.289)

VI-14.6 NextPrime

NextPrime (N:INT) : INT

syntax

Description

This function computes the smallest prime number greater than N. If N is negative or too large then the value
zero is returned. This function may generate primes larger than permitted as the characteristic of a finite field

in CoCoA. On most platforms primes up to about 45000 can be generated; in some cases a higher limit exists.
example

NextPrime (1000) ;
1009

290 Chapter VI-14. N
See Also: IsPrime (VI-9.34 pg.254), NextPPrime (VI-14.5 pg.289)

VI-14.7 NF

NF(F:POLY,I:IDEAL) :POLY
NF (V:VECTOR,M:MODULE) : VECTOR

syntax

Description

The first function returns the normal form of F with respect to I. It also computes a Groebner basis of I if that
basis has not been computed previously.

The second function returns the normal form of V with respect to M. It also computes a Groebner basis of
M if that basis has not been computed previously.

The coefficient ring is assumed to be a field. Note that the definition of normal form depends on the current
value of the option FullRed of the panel GROEBNER. If FullRed is FALSE it means that a polynomial is in
normal form when its leading term with respect to the the current term ordering cannot be reduced. If FullRed
is TRUE it means that a polynomial is in NF if and only if each monomial cannot be reduced.

example
Use R ::= Qlx,y,z];

Set FullRed;

I := Ideal(z);

NF (2" 2+xy+xz+y~2+yz+z~2,1);

X"2 + Xy +y°2

UnSet FullRed;

NF (x"2+xy+xz+y~2+yz+z~2,1);

XT2 + Xy +y°2+ xz +yz+ 272

See Also: DivAlg (VI-4.22 pg.192), FullRed (V-1.13 pg.143), GenRepr (VI-7.24 pg.221), IsIn (VI-9.29
pg.252), NFsAreZero (VI-14.8 pg.290), NR (VI-14.11 pg.291)

VI-14.8 NFsAreZero

NFsAreZero(L:LIST of POLY,M IDEAL):BOOL
NFsAreZero(L:LIST of VECTOR,M:MODULE) :BOOL

syntax

Description

This function returns TRUE if each component of L has normal form 0 with respect to M, i.e., if each component
is an element of M. Otherwise, it returns FALSE. The coefficient ring is assumed to be a field.
example

Use S ::= Qlt,x,y,z];

I := Ideal(t"31-t"6-x, t~8-y, t"10-2);

F := y™5-z74;

G := (t78-y) (3F+t~10-2);
NFsAreZero([F,G],I); -- F and G are in I
TRUE

NFsAreZero([F,x,G],I); -- x is not in I
FALSE

See Also: IsIn (VI-9.29 pg.252), NF (VI-14.7 pg.290)

VI-14.9. NonZero 291

VI-14.9 NonZero

NonZero(L:LIST or VECTOR):LIST

syntax

Description

This function returns the list obtained by removing the zeroes from L.
example

Use R ::= Q[x,y,z];
NonZero(["a",0,0,3,Ideal(y),0]);
["a", 3, Ideal(y)]

See Also: FirstNonZero (VI-6.7 pg.203), FirstNonZeroPos (VI-6.8 pg.204)

VI-14.10 Not, And, Or

syntax
Not E
E And F
EOr F

where E and F are of type BOOL.

Description

These operators have their usual meanings. Note that when two or more boolean expressions are combined
with AND, they are evaluated one by one until a FALSE expression is found. The rest are not evaluated. For
example, given the expression “A And B”, the system does not attempt to evaluate B unless A evaluates to
TRUE. Similarly, evaluation of a sequence of boolean expressions connected by OR stops as soon as a TRUE
expression is found.

VI-14.11 NR

NR(X:POLY,L:LIST of POLY):POLY
NR(X:VECTOR,L:LIST of VECTOR):VECTOR

syntax

Description

This function returns the normal remainder of X with respect to L, i.e., it returns the remainder from the
division algorithm. To get both the quotients and the remainder, use “DivAlg” (VI-4.22 pg.192). Note that
if the list does not form a Groebner basis, the remainder may not be zero even if X is in the ideal or module
generated by L (use “GenRepr” (VI-7.24 pg.221) or “NF” (VI-14.7 pg.290) instead).

example

Use R ::= Q[x,y,z];

F = x"2y+xy~2+y~2;

NR(F, [xy-1,y"2-11);

x+y+1

V := Vector (x"2+y~2+z"2,xyz) ;

NR(V, [Vector(x,y),Vector(y,z),Vector(z,x)]);
Vector(z™2, z°3 - yz - z72)

See Also: DivAlg (VI-4.22 pg.192), GenRepr (VI-7.24 pg.221), NF (VI-14.7 pg.290)

292 Chapter VI-14. N

VI-14.12 Num

Num(N:INT or RAT):INT
Num(N:POLY or RATFUN) :POLY

syntax

Description

These functions return the numerator and denominator of N. The numerator and denominator can also be found
using “.Num” and “.Den” (fragile).

example

See Also: Numerators and Denominators for Rational Functions (IV-10.2 pg.117), Numerators and
Denominators for Rational Numbers (IV-2.3 pg.87), Den (VI-4.9 pg.186)

VI-14.13 NumComps

syntax

NumComps (X:VECTOR or MODULE) : INT

Description

If X is a vector, this function returns the number of components of X; it gives the same result as Len(X). If X
is a module, then this function returns the rank of the free module in which X is defined.

example
Use R ::= Qlx,y];
NumComps (Vector (x,y,x"2+y"2,x"2-y"2)) ;

M := Module([x,y"2,2+x"2y], [x,0,y]); -- a submodule of R"3
NumComps (M) ;

M.NumComps; -- alternative syntax

See Also: Len (VI-12.5 pg.265)

VI-14.14 Numerical.BBasisOfPoints5

syntax

$numerical .BBasisOfPoints5(Points, Epsilon, Get0O):0bject

VI-14.15. Numerical. BBasisOfPointsInldeal5 293

Description

This command computes a border basis of an almost vanishing ideal for a set of points using the algorithm
described in the paper

D. Heldt, M. Kreuzer, H. Poulisse, S.Pokutta: “Approzimate Computation of Zero-Dimensional Ideals’
Submitted: August 2006

The current ring has to be a ring over the rationals with a standard-degree compatible term-ordering. The
matrix Points contains the points: each point is a row in the matrix, so the number of columns must equal the
number of indeterminates in the current ring. Epsilon is a rational ;0 describing which singular values should
be treated as 0 (smaller values for Epsilon lead to bigger errors of the polynomials evaluated at the point set).
Epsilon should be in the interval (0,1). As a rule of thumb, Epsilon is the expected percentage of error on the
input points. GetO must be either True or False. If it is true, the command returns a list of two values: the
first contains the border basis, the second one a vector space basis of P/I comprising those power products lying

outside the leading term ideal of I. If GetO is false, the function returns only the border basis (not in a list).
example

Points := Mat([[1,0,0],[0,0,1],[0,2,011);
$numerical .BBasisOfPoints5(Points,0.001,True) ;

[[x + 9007199254740991/18014398509481984y + z - 1, z"2 - 9007199254740991/9007199254740992z

See Also: Introduction to CoCoAServer (IV-14.1 pg.135), Numerical. GBasisOfPoints5 (VI-14.18 pg.295),
Numerical. HBasisOfPoints5 (VI-14.20 pg.296), Numerical. GBasisOfPointsInldeal5 (VI-14.19 pg.295), Numeri-
cal.BBasisOfPointsInIdeal5 (VI-14.15 pg.293), Numerical. HBasisOfPointsInldeal5 (VI-14.21 pg.296), Numeri-
cal.FirstVanishingRelations5 (VI-14.16 pg.294), Numerical First VanishingRelationsInIdeal5 (VI-14.17 pg.294)

VI-14.15 Numerical.BBasisOfPointsInldeal5

syntax
$numerical .BBasisOfPointsInIdeal5(Points, Epsilon, GetO, GBasis):Object

Description

This command computes a border basis of an almost vanishing sub-ideal for a set of points and ideal using the
algorithm described in the paper

D. Heldt, M. Kreuzer, H. Poulisse: “Computing Approzimate Vanishing Ideals” (Work in progress)

The current ring has to be a ring over the rationals with a standard-degree compatible term-ordering. The
matrix Points contains the points: each point is a row in the matrix, so the number of columns must equal the
number of indeterminates in the current ring. Epsilon is a rational ;0, describing which singular values should
be treated as 0 (smaller values for epsilon lead to bigger errors of the polynomials evaluated at the point set).
Epsilon should be in the interval (0,1). As a rule of thumb, Epsilon is the expected percentage of error on the
input points. GetO must be either True or False. If it is true, the command returns a list of two values: the
first contains the border basis, the second one a vector space basis of P/I comprising those power products lying
outside the leading term ideal of I. If GetO is false, the function returns only the border basis (not in a list).
GBasis must be a homogeneous Groebner Basis in the current ring. This basis defines the ideal we compute
the approximate vanishing ideal’s basis in. Warning: for reasons of efficiency the function does not check that

the validity of GBasis.
example

Points := Mat([[2,0,0],[0,3,0]1,[0,0,111);
$numerical .BBasisOfPointsInIdeal5(Points, 0.001, False,[z,y]);

See Also: Introduction to CoCoAServer (IV-14.1 pg.135), Numerical. GBasisOfPoints5 (VI-14.18
pg.295), Numerical. BBasisOfPointsh (VI-14.14 pg.292), Numerical. HBasisOfPoints5 (VI-14.20 pg.296), Numer-
ical.GBasisOfPointsInldeal5 (VI-14.19 pg.295), Numerical. HBasisOfPointsInIdeal5 (VI-14.21 pg.296), Numeri-
cal.FirstVanishingRelations5 (VI-14.16 pg.294), Numerical FirstVanishingRelationsInldeal5 (VI-14.17 pg.294)

1/2yz, xz

294 Chapter VI-14. N

VI-14.16 Numerical.FirstVanishingRelations5

syntax
$numerical .FirstVanishingRelations5(Points, Epsilon, Get0):0bject

Description

The current ring has to be a ring over the rationals with a standard-degree compatible term-ordering. The
matrix Points contains the points: each point is a row in the matrix, so the number of columns must equal the
number of indeterminates in the current ring. Epsilon is a rational ;0 describing which singular values should
be treated as 0 (smaller values of Epsilon lead to bigger errors of the polynomials evaluated at the point set).
Epsilon should be in the interval (0,1). As a rule of thumb, Epsilon is the expected percentage of error on the
input points. GetO must be either True or False. If it is true, the command returns a list of two values: the
first contains all lowest degree vanishing relations, the second one a vector space basis of P/I comprising those
power products lying outside the leading term ideal of I. If GetO is false, the function returns only the relations
(not in a list).

example
Points := Mat([[l,0,0]) [0:0’1] s [032,0]]):
$numerical .FirstVanishingRelations5(Points,0.001,True);

[[x + 9007199254740989/18014398509481984y + 4503599627370495/4503599627370496z - 4503599627370495/4503

See Also: Introduction to CoCoAServer (IV-14.1 pg.135), Numerical. GBasisOfPoints5 (VI-14.18
pg-295), Numerical. BBasisOfPoints5 (VI-14.14 pg.292), Numerical. HBasisOfPoints5 (VI-14.20 pg.296), Numer-
ical.GBasisOfPointsInldeal5 (VI-14.19 pg.295), Numerical. BBasisOfPointsInldeal5 (VI-14.15 pg.293), Numeri-
cal.HBasisOfPointsInldeal5 (VI-14.21 pg.296), Numerical FirstVanishingRelationsInIdeal5 (VI-14.17 pg.294)

VI-14.17 Numerical.First VanishingRelationsInldeal5

syntax
$numerical .FirstVanishingRelationsInIdeal5(Points, Epsilon, GetO, GBasis):Object

Description

The current ring has to be a ring over the rationals with a standard-degree compatible term-ordering. The
matrix Points contains the points: each point is a row in the matrix, so the number of columns must equal the
number of indeterminates in the current ring. Epsilon is a rational ;0 describing which singular values should
be treated as 0 (smaller values of Epsilon lead to bigger errors of the polynomials evaluated at the point set).
Epsilon should be in the interval (0,1). As a rule of thumb, Epsilon is the expected percentage of error on the
input points. GetO must be either True or False. If it is true, the command returns a list of two values: the first
contains all lowest degree vanishing relations, the second one a vector space basis of P/I comprising those power
products lying outside the leading term ideal of I. If GetO is false, the function returns only the relations (not
in a list). GBasis must be a homogeneous Groebner Basis in the current ring. This basis defines the ideal we
compute the approximate vanishing relations in. Warning: for efficiency the validity of GBasis is not checked.
example

Points := Mat([[1,0,0],[0,0,1],[0,2,0]11);
$numerical .FirstVanishingRelationsInIdeal5(Points,0.001,True, [x]);

-— CoCoAServer: computing Cpu Time = 0O

[[xz, 1/2xy, x"2 - 4503599627370495/4503599627370496x], [x]]

See Also: Introduction to CoCoAServer (IV-14.1 pg.135), Numerical. GBasisOfPoints5 (VI-14.18
pg.295), Numerical. BBasisOfPointsh (VI-14.14 pg.292), Numerical. HBasisOfPoints5 (VI-14.20 pg.296), Numer-
ical.GBasisOfPointsInldeal5 (VI-14.19 pg.295), Numerical. BBasisOfPointsInldeal5 (VI-14.15 pg.293), Numeri-
cal.HBasisOfPointsInIdeal5 (VI-14.21 pg.296), Numerical. FirstVanishingRelations5 (VI-14.16 pg.294)

VI-14.18. Numerical GBasisOfPoints5 295

VI-14.18 Numerical.GBasisOfPointsb

syntax
$numerical.GBasisOfPoints5(Points, Epsilon, Get0O):0bject

Description

This command computes a Groebner basis of an almost vanishing ideal for a set of points using the algorithm
described in the paper

D. Heldt, M. Kreuzer, H. Poulisse, S.Pokutta: “Approximate Computation of Zero-Dimensional Ideals’
Submitted: August 2006

The current ring has to be a ring over the rationals with a standard-degree compatible term-ordering. The
matrix Points contains the points: each point is a row in the matrix, so the number of columns must equal the
number of indeterminates in the current ring. Epsilon is a rational ;0, describing which singular values should
be treated as 0 (smaller values for epsilon lead to bigger errors of the polynomials evaluated at the point set).
Epsilon should be in the interval (0,1). As a rule of thumb, Epsilon is the expected percentage of error on the
input points. GetO must be either True or False. If it is true, the command returns a list of two values: the
first contains the Groebner basis, the second one a vector space basis of P/I comprising those power products
lying outside the leading term ideal of I. If GetO is false, the function returns only the Groebner basis (not in
a list).

example
Points := Mat([[1,0,0],[0,0,1],[0,2,0]11);
$numerical.GBasisOfPoints5(Points,0.001,True);

-— CoCoAServer: computing Cpu Time = 0.0185

[[x + 9007199254740991/18014398509481984y + z - 1, z"2 - 9007199254740991/9007199254740992z

See Also: Introduction to CoCoAServer (IV-14.1 pg.135), Numerical. BBasisOfPoints5 (VI-14.14 pg.292),
Numerical. HBasisOfPoints5 (VI-14.20 pg.296), Numerical. GBasisOfPointsInldeal5 (VI-14.19 pg.295), Numeri-
cal.BBasisOfPointsInldeal5 (VI-14.15 pg.293), Numerical. HBasisOfPointsInldeal5 (VI-14.21 pg.296), Numeri-
cal.FirstVanishingRelations5 (VI-14.16 pg.294), Numerical First VanishingRelationsInIdeal5 (VI-14.17 pg.294)

VI-14.19 Numerical.GBasisOfPointsInldeal5

syntax
$numerical.GBasisOfPointsInIdeal5(Points, Epsilon, GetO, GBasis):Object

Description

This command computes a Groebner basis of an almost vanishing sub-ideal for a set of points and ideal using
the algorithm described in the paper

D. Heldt, M. Kreuzer, H. Poulisse: “Computing Approzimate Vanishing Ideals” (Work in progress)

The current ring has to be a ring over the rationals with a standard-degree compatible term-ordering. The
matrix Points contains the points: each point is a row in the matrix, so the number of columns must equal the
number of indeterminates in the current ring. Epsilon is a rational ;0 describing which singular values should
be treated as 0 (smaller values for epsilon lead to bigger errors of the polynomials evaluated at the point set).
Epsilon should be in the interval (0,1). As a rule of thumb, Epsilon is the expected percentage of error on the
input points. GetO must be either True or False. If it is true, the command returns a list of two values: the
first contains the Groebner basis, the second one a vector space basis of P/I comprising those power products
lying outside the leading term ideal of I. If GetO is false, the function returns only the Groebner basis (not
in a list). GBasis must be a homogeneous Groebner Basis in the current ring. This basis defines the ideal we
compute the approximate vanishing ideal’s basis in. Warning: for reasons of efficiency the function does not
check that the validity of GBasis.

example

Points := Mat([[2,o,0]) [0)330] s [O)O) 1]]) 5
$numerical.GBasisOfPointsInIdeal5(Points, 0.001, False,[z,y]);
—-- CoCoAServer: computing Cpu Time = 0.0160

1/2yz, 1/

296 Chapter VI-14. N

See Also: Introduction to CoCoAServer (IV-14.1 pg.135), Numerical. GBasisOfPoints5 (VI-14.18
pg-295), Numerical. BBasisOfPointsh (VI-14.14 pg.292), Numerical. HBasisOfPoints5 (VI-14.20 pg.296), Numer-
ical. BBasisOfPointsInldeal5 (VI-14.15 pg.293), Numerical. HBasisOfPointsInldeal5 (VI-14.21 pg.296), Numeri-
cal.FirstVanishingRelations5 (VI-14.16 pg.294), Numerical FirstVanishingRelationsInldeal5 (VI-14.17 pg.294)

VI-14.20 Numerical.HBasisOfPoints5

syntax
$numerical .HBasisOfPoints5(Points, Epsilon, Get0O):0bject

Description

WARNING: This function does not yet work!

This command computes a H basis of an almost vanishing ideal for a set of points using the algorithm
described in the paper

D. Heldt, M. Kreuzer, H. Poulisse, S.Pokutta: “Approzimate Computation of Zero-Dimensional Ideals’
Submitted: August 2006

The current ring has to be a ring over the rationals with a standard-degree compatible term-ordering. The
matrix Points contains the points: each point is a row in the matrix, so the number of columns must equal the
number of indeterminates in the current ring. Epsilon is a rational ;0, describing which singular values should
be treated as 0 (smaller values for epsilon lead to bigger errors of the polynomials evaluated at the point set).
Epsilon should be in the interval (0,1). As a rule of thumb, Epsilon is the expected percentage of error on the
input points. GetO must be either True or False. If it is true, the command returns a list of two values: the
first contains the H basis, the second one a vector space basis of P/I comprising those power products lying
outside the leading term ideal of I. If GetO is false, the function returns only the H basis (not in a list).

example

-- NOT YET WORKING --

See Also: Introduction to CoCoAServer (IV-14.1 pg.135), Numerical. GBasisOfPoints5 (VI-14.18 pg.295),
Numerical. BBasisOfPoints5 (VI-14.14 pg.292), Numerical. GBasisOfPointsInldeal5 (VI-14.19 pg.295), Numeri-
cal.BBasisOfPointsInldeal5 (VI-14.15 pg.293), Numerical. HBasisOfPointsInldeal5 (VI-14.21 pg.296), Numeri-
cal.FirstVanishingRelations5 (VI-14.16 pg.294), Numerical First VanishingRelationsInIdeal5 (VI-14.17 pg.294)

VI-14.21 Numerical.HBasisOfPointsInldeal5

syntax
$numerical .HBasisOfPointsInIdeal5(Points, Epsilon, Get0,GBasis):0bject

Description

Warning: This function does not yet work!

This command computes H border basis of an almost vanishing sub-ideal for a set of points and ideal using
the algorithm described in the paper

D. Heldt, M. Kreuzer, H. Poulisse: “Computing Approzimate Vanishing Ideals” (Work in progress)

The current ring has to be a ring over the rationals with a standard-degree compatible term-ordering. The
matrix Points contains the points: each point is a row in the matrix, so the number of columns must equal the
number of indeterminates in the current ring. Epsilon is a rational ;0, describing which singular values should
be treated as 0 (smaller values for epsilon lead to bigger errors of the polynomials evaluated at the point set).
Epsilon should be in the interval (0,1). As a rule of thumb, Epsilon is the expected percentage of error on the
input points. GetO must be either True or False. If it is true, the command returns a list of two values: the first
contains the H basis, the second one a vector space basis of P/I comprising those power products lying outside
the leading term ideal of I. If GetO is false, the function returns only the H basis (not in a list). GBasis has to

VI-14.22. Numerical. QR5 297

be a homogeneous Groebner Basis in the current ring. This basis defines the ideal we compute the approximate
vanishing ideal’s basis in. Warning: for efficiency, the validity of GBasis is not checked.
example

-- NOT YET WORKING --

See Also: Introduction to CoCoAServer (IV-14.1 pg.135), Numerical. GBasisOfPoints5 (VI-14.18
pg-295), Numerical. BBasisOfPointsh (VI-14.14 pg.292), Numerical. HBasisOfPoints5 (VI-14.20 pg.296), Numer-
ical.GBasisOfPointsInldeal5 (VI-14.19 pg.295), Numerical. BBasisOfPointsInldeal5 (VI-14.15 pg.293), Numeri-
cal.FirstVanishingRelations5 (VI-14.16 pg.294), Numerical First VanishingRelationsInIdeal5 (VI-14.17 pg.294)

VI-14.22 Numerical.QR5

syntax

$numerical .QR5(A:Matrix) :Matrix;

Description

This function returns a matrix, containing the “IMPI’. The matrix consists of the upper-right triangular matrix
and the lower left triangular matrix, describing the input matrix’s QR-decomposition.
example

Points:=Mat([[1,2,3],[2,3,4],[3,4,5]11);
$numerical.QR5(Points) ;
Mat ([
[-8425463406411593/2251799813685248, 7598355191047809/18014398509481984, 5698766393285857

9007199254

[-1504547036859213/281474976710656, 737074506864293/1125899906842624, 7744099468837749/9007199254740
[-7823644591667907/1125899906842624, 5896596054914343/4503599627370496, -809/4611686018427387904]

See Also: Introduction to CoCoAServer (IV-14.1 pg.135), Numerical.SVD5 (VI-14.23 pg.297)

VI-14.23 Numerical.SVD5

$numerical .SVD5(A:Matrix) :List

syntax

Description

This function returns a list of three matrices which form the singular value decomposition of the input matrix.
The list produced is [U, S, VT]|. Warning: internally floating point values are used, so the result is only
approximate.

example
D:=Mat([[1,2,7,18],[2,4,9,12],[23,8,9,10]11);
$numerical.SVD5(D) ;
[Mat ([

[-2608957845014309/4503599627370496, 3400715993947695/4503599627370496, -1196230415249177

4503599627

[-4803191187447087/18014398509481984, 4289880920686871/36028797018963968, 3813211715037953/900719925
[-7645273287337725/18014398509481984, -5741692259075309/36028797018963968, 3381220959856661/45035996
[-5789886178591733/9007199254740992, -2813340077166513/4503599627370496, -7780633724302695/180143985

1), Mat([

[1164315100749939/35184372088832, 4798366071344577/281474976710656, 3788674137264815/112589990684262

1), Mat([

[-8521591816535737/18014398509481984, -3744869794805223/9007199254740992, -6996513907843673/90071992
[-3002889242741505/4503599627370496, -7337996657000815/18014398509481984, 2810636692253967/450359962

298 Chapter VI-14. N

[-5187087952406809/9007199254740992, 915526145687749/1125899906842624, -6091132379868651/72057594037
DI

See Also: Introduction to CoCoAServer (IV-14.1 pg.135), Numerical. QR5 (VI-14.22 pg.297)

VI-14.24 Numlndets

NumIndets() : INT
NumIndet (R:RING) : INT

syntax

Description

This function returns the number of indeterminates of the current ring or of R.

example
S ::= Qlx,y];

Use R ::= Qlx,y,2];

NumIndets();

See Also: Indet (VI-9.11 pg.244), IndetInd (VI-9.12 pg.245), IndetIndex (VI-9.13 pg.245), IndetName
(VI-9.14 pg.245), Indets (VI-9.15 pg.246)

Chapter VI-15

O

VI-15.1 OpenlFile

syntax

OpenIFile(S:STRING) :DEVICE

Description

This function opens the file with name S for input. Input from that file can then be read with “Get” (VI-7.26

pg.222).
(Note: one would normally use “Source” (VI-19.16 pg.337) to read CoCoA commands from a file.)

example
D := OpenOFile("my-test"); -- open "my-test" for output from CoCoA
Print "hello world" On D; -- print string into "mytest"
Close(D);
D := OpenIFile("my-test"); -- open "my-test" for input to CoCoA
Get(D,3); -- get the first three characters (in Ascii code)
[104, 101, 108]
Ascii(It); -- convert the ascii code into characters
hel
Close(D);

See Also: Close (VI-3.11 pg.174), Introduction to 10 (III-7.1 pg.61), OpenOFile (VI-15.4 pg.301),
OpenlString (VI-15.2 pg.299), OpenOString (VI-15.5 pg.301), OpenSocket (VI-15.6 pg.301), Source (VI-19.16

pg.337)

VI-15.2 OpenlString

syntax

OpenIString(S:STRING,T:STRING) :DEVICE
Open0String(S:STRING) :DEVICE

Description

This function open strings for input. The string S serves as the name of the device opened for input or output;
one may use the empty string. “OpenIString” is used to read input from the string T with the help of “Get”
(VI-7.26 pg.222).

example

S
D :

"hello world";
OpenIString("",S); -- open the string S for input to CoCoA

299

300 Chapter VI-15. O

L := Get(D,7); -- read 7 characters from the string
L; -- ascii code
[104, 101, 108, 108, 111, 32, 119]

Ascii(L); -- convert ascii code to characters
hello w
Close(D); -- close device D

See Also: Close (VI-3.11 pg.174), Introduction to IO (III-7.1 pg.61), OpenOString (VI-15.5 pg.301),
OpenlFile (VI-15.1 pg.299), OpenOFile (VI-15.4 pg.301), Source (VI-19.16 pg.337), Sprint (VI-19.18 pg.338)

VI-15.3 OpenLog

syntax
OpenLog(D:DEVICE) :NULL

Description

This function opens the output device D and starts to record the output from a CoCoA session on D. The
“CloseLog” (VI-3.12 pg.174) closes the device D and stops recording the CoCoA session on D.

At present the choices for the device D are an output file (see “OpenOFile” (VI-15.4 pg.301)) or an output
string (see “Open0String” (VI-15.5 pg.301)). Several output devices may be open at a time. If the panel option
“Echo” is set to TRUE, both the input and output of the CoCoA session are logged; otherwise, just the output
is logged.

example
D := OpenOFile("MySession");

OpenLog (D) ;

1+1;

G :=1;
Set Echo;
2+2;

2+ 2

F := 2;

F =2
CloseLog(D);
CloseLog(D)
UnSet Echo;
SET(Echo, FALSE)

The contents of "MySession":

F =2
CloseLog(D)

See Also: Introduction to IO (IT1-7.1 pg.61), OpenlFile (VI-15.1 pg.299), OpenOFile (VI-15.4 pg.301),
OpenlString (VI-15.2 pg.299), OpenOString (VI-15.5 pg.301), Unset (VI-21.2 pg.351)

VI-15.4. OpenOFile 301

VI-15.4 OpenOFile

syntax

OpenOFile(S:STRING) :DEVICE
OpenOFile(S:STRING,"w" or "W"):DEVICE

Description

This function opens the file with name S—creating it if it does not already exist—for output. If used with
second argument “w” or “W” then it immediately erases the file S. The function “Print 0n” (VI-16.17 pg.311)
is then used for appending output to S.

example
D := OpenOFile("my-test"); -- open "my-test" for output from CoCoA
Print "hello world" On D; -- print string into "mytest"
Print " test" On D; -- append to the file "mytest"
Close(D); -- close the file
D := OpenOFile("my-test","w"); -- clear "my-test"
Print "goodbye" On D; -- "mytest" now consists only of the string "goodbye"
Close(D);

See Also: Close (VI-3.11 pg.174), Introduction to IO (III-7.1 pg.61), OpenlFile (VI-15.1 pg.299),
OpenlString (VI-15.2 pg.299), OpenOString (VI-15.5 pg.301), Source (VI-19.16 pg.337)

VI-15.5 OpenOString

syntax

OpenOString(S:STRING) : DEVICE

Description

This function opens strings for output. The string S serves as the name of the device opened for input or output;
one may use the empty string. “OpenOString” is used to write to a string with the help of “Print On”.

example
D := OpenOString(""); -- open a string for output from CoCoA
L := [1,2,3]; -- a list
Print L On D; -- print to D
D;
Record[Name = "", Type = "OString", Protocol = "CoCoAL"]
S := Cast(D,STRING); -- S is the string output to D
S; —— a string
(1, 2, 3]
Print " more characters" On D; -- append to the existing output string
Cast (D,STRING) ;
[1, 2, 3] more characters

See Also: Close (VI-3.11 pg.174), Introduction to IO (III-7.1 pg.61), OpenlFile (VI-15.1 pg.299),
OpenOFile (VI-15.4 pg.301), OpenIString (VI-15.2 pg.299), Source (VI-19.16 pg.337), Sprint (VI-19.18 pg.338)

VI-15.6 OpenSocket

syntax
OpenSocket (Machine: STRING, Port: STRING): DEVICE

302 Chapter VI-15. O

Description

This function opens a client socket (I/O) connection. It requires the name of the machine with the server socket
and the port number (expressed as a STRING).

CoCoA-4 communicates with the CoCoAServer via socket which, by default, runs on “localhost” on port
“"0xc0c0"”. To change these settings redefine in your “userinit.coc” or “.cocoarc” the variables

MEMORY.CoCoAServerMachine := "localhost";
MEMORY.CoCoAServerPort := "0OxcOcO";

example
D := OpenSocket("localhost", "10000");

Print 10076 On D;
Source D;
Close(D);

See Also: Introduction to IO (I11-7.1 pg.61), OpenlFile (VI-15.1 pg.299), OpenOFile (VI-15.4 pg.301),
OpenlString (VI-15.2 pg.299), OpenOString (VI-15.5 pg.301), Unset (VI-21.2 pg.351)

VI-15.7 Option

syntax

Option(0) :BOOL

where 0 is a panel option.

Description

This function returns the status of a panel option (TRUE/FALSE). For a list of panels, use “Panels” (VI-16.3
pg-306) and for the current status of each option for a panel with name P, use “Panel(P)”. To toggle option
values, use “Set-Unset” (VI-19.6 pg.332). The function “Option” (VI-15.7 pg.302) is particularly useful inside
a user-defined function in order to temporarily change the value of an option (restoring the option’s original
value when the function is complete). See “Setting Options” (V-1.2 pg.139) for an example of this use of
“Option” (VI-15.7 pg.302).

example

Option(Indentation) ;
FALSE

See Also: Introduction to Panels (V-1.1 pg.139), Panel (VI-16.2 pg.305), Panels (VI-16.3 pg.306), Setting
Options (V-1.2 pg.139), Unset (VI-21.2 pg.351)

VI-15.8 Ord

Ord () :MAT
Ord (R:RING) :MAT
Ord(M:MAT) :MAT

syntax

Description

The first two forms return matrices which describe the term-ordering of the current ring or of the ring R,
respectively. The last form is used as a modifier when creating a new ring. In that case, it determines the
term-ordering for the ring (see “Orderings” (IV-8.6 pg.106)). Its argument is a matrix of small integers which
defines a term-ordering; i.e. for a ring with N indeterminates it must be an NxN matrix of full rank where
the first non-zero entry in each column is positive. The matrix entries must be in the range -32767 to +32767,
otherwise an error results.

VI-15.8. Ord 303

example
Use S ::= Qlx,y,z], Ord(Mat([[1,0,0],
fo,1,0]1,
[0,0,111));

M := Mat([[1,1],[0,-111);
T ::= Q[a,b], 0rd(M);
U ::= Z/(101) [x,y,z,t], DegRevlex;
-- The term-order for the current ring, S.
0rdQ);
Mat ([

(1, 0, 0],

[o, 1, o1,

[0, 0, 1]
ID)
0rd(T);
Mat ([

(1, 11,

o, -1]
D
0rd(U) ;
Mat ([

(1, 1, 1, 11,

(o, o, o, -11,

[0, O , 0],

See Also: DegLexMat (VI-4.6 pg.184), DegRevLexMat (VI-4.7 pg.185), LexMat (VI-12.6 pg.266),
RevLexMat (VI-18.21 pg.325), XelMat (VI-24.1 pg.361), Elim (VI-5.2 pg.195), Orderings (IV-8.6 pg.106), Pre-
defined Term-Orderings (IV-8.7 pg.106)

304 Chapter VI-15. O

Chapter VI-16

P

VI-16.1 Packages

syntax

Packages () :LIST

Description

This function returns the names of the loaded packages as a list of strings. The string “$user” refers to the
user-defined functions defined in the current CoCoA session.
example

Packages();
["¢“\verb&$builting’’", "‘‘\verb&$coclib&’’", "‘‘\verb&$user&’’", "$help",
Il$ioll’ ll$miscll]

See Also: CoCoA Packages (I11-9 pg.71), Supported Packages (I11-9.11 pg.76)

VI-16.2 Panel

Panel (E)

syntax

where E is one of "GENERAL" or "GROEBNER".

Description

This command prints the status of the options in one of the three panels. It returns no value.

example

Panel (GENERAL) ;

Echo............... : FALSE
Timer.............. . FALSE
Trace.............. : FALSE
Indentation........ : FALSE
TraceSources....... : FALSE
SuppressWarnings... : FALSE
ComputationStack... : FALSE

See Also: Introduction to Panels (V-1.1 pg.139), Option (VI-15.7 pg.302), Panels (VI-16.3 pg.306), Unset
(VI-21.2 pg.351)

305

306 Chapter VI-16. P

VI-16.3 Panels

syntax
Panels()
Description
This function returns a list of CoCoA’s panels.
example

Panels();
["GENERAL", "GROEBNER"]

Echo............... : FALSE
Timer.............. : FALSE
Trace.............. : FALSE
Indentation........ : FALSE
TraceSources....... . FALSE
SuppressWarnings... : FALSE
ComputationStack... : FALSE

See Also: Introduction to Panels (V-1.1 pg.139), Option (VI-15.7 pg.302), Panel (VI-16.2 pg.305), Unset
(VI-21.2 pg.351)

VI-16.4 Partitions

Partitions(N: INT): LIST

syntax

Description

These function returns all integer partitions of N, positive integer

example

Partitions(3);
(es1, 1, 21, (1, 1, 111

See Also: Subsets (VI-19.22 pg.340), Tuples (VI-20.8 pg.348)

VI-16.5 Permutations

Permutations(L: LIST): LIST

syntax

Description

This function computes all permutations of the entries of a list (set). If L has repeated elements it will return
repeated elements.

example

Permutations(3..5);

(rs, 4, s1, [3, 5, 41, [4, 3, 51, [4, 5, 3], [5, 3, 41, [5, 4, 311
Permutations([2, 2, x]);

[z, 2, =1, (2, x, 21, (2, 2, x1, [2, x, 2], [x, 2, 2], [x, 2, 2]]

VI-16.6. Pfaffian 307

MakeSet (Permutations([2, 2, x]));
(rz, 2, x1, [2, x, 2], [x, 2, 2]]

See Also: Subsets (VI-19.22 pg.340), Tuples (VI-20.8 pg.348)

VI-16.6 Pfaffian

Pfaffian(M:MAT)

syntax

where M is skew-symmetric. The resulting type depends on the entries
of the matrix.

Description

This function returns the Pfaffian of M.

example
Use R ::= Qlx,y];
Pfaffian(Mat ([[0,y], [-y,011));
y
See Also: Det (VI-4.15 pg.190)
VI-16.7 PkgName
syntax

PkgName () : STRING
S.PkgName () : STRING

where S is the identifier or alias for a package.

Description

This function returns the (long) name of a package. The first form returns “$coclib” and the second returns
the name of the package whose name or alias is S. This function is useful as a shorthand, when S is an alias,
for the full name a package.

example

GB.PkgName () ;
$gb
$gb.PkgName () ;
$gb

PkgName () ;
$coclib

VI-16.8 Poincare

syntax

Poincare (M:RING or TAGGED("Quotient")) :TAGGED("$hp.PSeries")

308 Chapter VI-16. P

Description

Same as “HilbertSeries” (VI-8.20 pg.232).

See Also: Dim (VI-4.18 pg.191), Hilbert (VI-8.16 pg.231), HilbertSeries (VI-8.20 pg.232), HVector
(VI-8.27 pg.236), Multiplicity (VI-13.24 pg.285), PoincareMultiDeg (VI-16.9 pg.308), PoincareShifts (VI-16.10
pg.308), Weights Modifier (IV-8.5 pg.105), WeightsMatrix (VI-23.2 pg.357)

VI-16.9 PoincareMultiDeg

syntax
PoincareMultiDeg (TAGGED ("Quotient") ,WM:MAT) : TAGGED ("$hp.PSeries")

Description

Same as “HilbertSeriesMultiDeg” (VI-8.21 pg.233).

example

Use R ::= Qlx,y,z];

WM := Mat([[l,O,O] 5 [1:_170]]);
PoincareMultiDeg(R/Ideal (Indets()) "2, WM);

See Also: HilbertSeries (VI-8.20 pg.232), HilbertSeriesMultiDeg (VI-8.21 pg.233), Weights Modifier (IV-
8.5 pg.105), WeightsMatrix (VI-23.2 pg.357)

VI-16.10 PoincareShifts
syntax

PoincareShifts(M: Module, ShiftsList: LIST):TAGGED("$hp.PSeries")
PoincareShifts(M: TAGGED("Quotient"), ShiftsList: LIST)
:TAGGED("$hp.PSeries")

Description

Same as “HilbertSeriesShifts” (VI-8.22 pg.234).

See Also: Dim (VI-4.18 pg.191), Hilbert (VI-8.16 pg.231), HilbertSeries (VI-8.20 pg.232), Hilbert-
SeriesShifts (VI-8.22 pg.234), HVector (VI-8.27 pg.236), Multiplicity (VI-13.24 pg.285), Poincare (VI-16.8
pg.307), PoincareMultiDeg (VI-16.9 pg.308), Weights Modifier (IV-8.5 pg.105), WeightsMatrix (VI-23.2 pg.357)

VI-16.11 Poly

syntax

Poly(E:0BJECT) : POLY

Description

This function converts the expression E into a polynomial, if possible. It is the same as Cast(E,POLY).

example
F := 3;

G := Poly(3);

Type (F);

INT

Type (G ;

POLY

VI-16.12. PositiveGrading4 309

Poly(Vector(x));

See Also: Cast (VI-3.3 pg.170)

VI-16.12 PositiveGrading4

syntax

PositiveGrading4 (M:MATRIX) :MATRIX

Description

This function returns a matrix defining a “simnilar” multigrading. Because of an innate limitation (see “Weights
Modifier” (IV-8.5 pg.105)) CoCoA-4 does not allow zero entries in the first row of the weights matrix. This
function returns a matrix which has an extra first row which is a suitable combination of the following rows
and has no zero entries. This we can work in CoCoA-4 with any positive grading being the first component the
multidegree “redundant’.

example

G := Mat([[1,1,1,0,0], [0,0,0,1,111);

PG := PositiveGrading4(G);

Use Q[x[1..5]], Weights(PG);

MDeg(x[2]); -- ignore the first entry to get the degree wrt G
1, 1, 0]

Tail (MDeg(x[21));
[1, 0]

See Also: Weights Modifier (IV-8.5 pg.105), IsPositiveGrading (VI-9.32 pg.253), HilbertSeriesMultiDeg
(VI-8.21 pg.233)

VI-16.13 PowerMod

PowerMod (A:INT,B:INT,M:INT) : INT

syntax

Description

This function calculates efficiently an integer power modulo a given modulus. Thus “PowerMod(A,B,M)” is
equal to “Mod(A"B, M)”, but the former is computed faster. B must be non-negative.

example
PowerMod (12345,41041,41041); -- 41041 is a Carmichael number
12345
PowerMod (123456789,987654321,32003) ; —- cannot compute 123456789°987654321 directly
2332
VI-16.14 PreprocessPts5
syntax

PreprocessPts5(Pts: LIST, Toler: LIST): LIST
PreprocessPts5(Pts: LIST, Toler: LIST, "Grid"): LIST

310 Chapter VI-16. P

PreprocessPts5(Pts: LIST, Toler: LIST, "Subdiv"): LIST
PreprocessPts5(Pts: LIST, Toler: LIST, "Aggr"): LIST

Description

This function returns a list of “well-separated’ points. The first argument is a list of points in k-dimensional
space, and the second argument is list of k tolerances (one for each dimension). The function detects groups
of close points (all lying within the given tolerance of each other) and chooses a representative for the whole
group; the result is the list of these representatives.

There is a third, optional argument: it should be one of the strings “Grid”, “Subdiv”, “Aggr” and specifies
which specific algorithm to use. If there are just two arguments, an automatic choice is made between “Subdiv”
and “Aggr”; the “Subdiv” method works well when the original points are densely packed (so the result will be
a small list), while the “Aggr” method is better suited to situations where the original points are less densely
packed. The “Aggr” method regards the tolerances as being slightly flexible.

For a full description of the algorithms we refer to the paper J.Abbott, C.Fassino, L.Torrente “Thinning Out
Redundant Empirical Data” (arXiv:0702327).

Note: values are represented internally in floating point, so the results are only approximate, and may vary
from one type of computer to another.

example
Pts := [[-1,0],[0,0],[1,0],[99,1],[99,01,[99,-111;
Toler := [3,3];
PreprocessPts5(Pts, Toler);
[f99, o1, fo, 011
PreprocessPts5(Pts, [0.8,0.8]);
[[_1/23 0]) [1y 0]’ [993 1/2:|s [99’ _1]]
PreprocessPts5(Pts, [0.9,0.9], "Aggr"); -- exhibits tolerance flex
[[o, 0], [99, 0]1]

See Also: Introduction to CoCoAServer (IV-14.1 pg.135)

VI-16.15 PrimaryDecomposition

syntax
PrimaryDecomposition(I: SQUAREFREE MONOMIAL IDEAL): LIST of IDEAL

Description

This function returns the primary decomposition of the ideal I. Currently it is implemented ONLY for squarefree
monomial ideals using the Alexander dual technique.

example
Use R ::= Q[x,y,z];
PrimaryDecomposition(Ideal (xy, xz, yz));
[Ideal(y, z), Ideal(x, z), Ideal(x, y)]
See Also: EquilsoDec (VI-5.5 pg.196)
VI-16.16 Print
syntax

Print E_1,...,E_n :NULL
Print(E_1,...,E_n):NULL

where the E_i are CoCoA expressions.

VI-16.17. Print On

311

Description

This command displays the value of each of the expressions, “E_i”. The parentheses are optional. The argument
“NewLine” (without quotes, but note the two capital letters), moves the cursor to the next line.

The similar command “PrintLn” (VI-16.18 pg.311) is equivalent to “Print” with a final extra argument,
“NewLine”.

example
For T := 1 To 10 Do

Print(I"2, " ");
EndFor;

149 16 25 36 49 64 81 100

Print "hello",NewLine,"world";
hello

world

See Also: Print On (VI-16.17 pg.311), PrintLn (VI-16.18 pg.311), Latex (VI-12.2 pg.263), StarPrint
(VI-19.19 pg.338)

VI-16.17 Print On

Print E:0BJECT On D:DEVICE

syntax

Description

This command prints the value of expression E to the device D. Currently, the command can be used to print

to files, strings, or the CoCoA window. In the first two cases, the appropriate device must be opened with
“OpenQFile” (VI-15.4 pg.301) or “Open0String” (VI-15.5 pg.301).

example
-- open "my-test" for output from CoCoA
-- print string into "mytest"

D := OpenOFile("my-test");
Print "hello world" On D;

Close(D); -- close the file
D := OpenIFile("my-test"); -- open "my-test" for input to CoCoA
Get (D, 3);

-- get the first three characters (in Ascii code)
[104, 101, 108]

Ascii(It);

—-- convert the ascii code into characters
hel

Close(D);

See “OpenOFile” (VI-15.4 pg.301) for an example using output strings. For printing to the CoCoA window,
just use “Print E” which is short for “Print E On DEV.QUT”.

See Also: Introduction to IO (II1-7.1 pg.61), OpenlFile (VI-15.1 pg.299), OpenOFile (VI-15.4 pg.301),

OpenlString (VI-15.2 pg.299), OpenOString (VI-15.5 pg.301), Print (VI-16.16 pg.310), PrintLn (VI-16.18
pg.311)

VI-16.18 PrintLn

Println E_1,...,E_n :NULL
PrintLn(E_1,...,E_n):NULL

syntax

where the E_i are CoCoA expressions.

312 Chapter VI-16. P

Description

This command is equivalent to “Print” (VI-16.16 pg.310) with a final extra argument, “NewLine”; in other
words, it prints the values of its arguments, then moves the cursor to the next line. The parentheses are optional.
example

For I := 1 To 10 Do
Print(I~2, " ");

EndFor;

149 16 25 36 49 64 81 100

For I := 1 To 3 Do
PrintLn(I);

EndFor;

Print "hello",NewLine,"world";
hello
world

See Also: Print (VI-16.16 pg.310), Print On (VI-16.17 pg.311)

VI-16.19 Product

Product(L:List) :0BJECT

syntax

Description

This function returns the product of the objects in the list L.

example
Use R ::= Q[x,y];
Product([3,x,y"2]);
3xy~2

Product(1..40) = Fact(40);
TRUE

See Also: Algebraic Operators (I11-3.2 pg.51), Sum (VI-19.24 pg.341)

Chapter VI-17

Q

VI-17.1 Quit

syntax

Quit

Description

This command is used to quit CoCoA. Note, it is issued as follows:
Quit;
without parentheses.
See Also: Ciao (VI-3.8 pg.173)

VI-17.2 QuotientBasis

syntax

QuotientBasis(I:IDEAL) :LIST

Description

This function determines a vector space basis (of power products) for the quotient space associated to a zero-
dimensional ideal. That is, if R is a polynomial ring with field of coeflicients k, and I is a zero-dimensional ideal
in R then QuotientBasis(I) is a set of power products forming a k-vector space basis of R/I.

The actual set of power products chosen depends on the term ordering in the ring R: the power products
chosen are those not divisible by the leading term of any member of the reduced Groebner basis of I.
example
Points := [[Rand(-9,9) | N In 1..3] | S In 1..25];
Use Q[x,y,z];
I := IdealOfPoints(Points);
QuotientBasis(I); —-- power products underneath the DegRevlLex reduced GBasis
[1, z, z°2, 273, z°4, y, yz, yz~2, yz~3, y~2, y™2z, y 2272, y°3, x,
xz, xz"2, xz°3, Xy, Xyz, xyz~2, Xy 2, x"2, x"2z, x"2y, x°3]

Use Qlx,y,z],Lex;

I := IdealOfPoints(Points);

QuotientBasis(I); -- power products underneath the Lex reduced GBasis
[1, z, z°2, z°3, z°4, z°5, z°6, z°7, z°8, z°9, z~10, z~11, z~12, z~13,

vy, yz, yz°2, yz~3, yz"4, yz°5, yz~6, y°2, y 2z, y 2z72, y~2z"3]

See Also: IdealOfPoints (VI-9.4 pg.239)

313

314 Chapter VI-17. Q

VI-17.3 QZP

syntax
QZP (F:POLY) :POLY

QZP(F:LIST of POLY):LIST of POLY

QZP(I:IDEAL) :IDEAL

Description

The functions “QZP” and “ZPQ” (VI-25.1 pg.363) map polynomials and ideals of other rings into ones of the
current ring. When mapping from one ring to another, one of the rings must have coefficients in the rational
numbers and the other must have coefficients in a finite field. The indeterminates in both rings must be identical.

The function “QZP” maps polynomials with rational coefficients to polynomials with coefficients in a finite
field; the function “ZPQ” (VI-25.1 pg.363) does the reverse, mapping a polynomial with finite field coefficients
into one with rational (actually, integer) coefficients. The function “ZPQ” (VI-25.1 pg.363) is not uniquely
defined mathematically, and currently for each coefficient the least non-negative equivalent integer is chosen.
Users should not rely on this choice, though any change will be documented.

example

Use R ::= Qlx,y,2];

F := 1/2%xx"3 + 34/567*x*y*z - 890; -- a poly with rational coefficients

Use S ::= Z/(101) [x,y,2];

QZP(F) ; -- compute its image with coeffs in Z/(101)
-50x"3 - 19xyz + 19

G := It;

Use R;

ZPQ(G) ; -- now map that result back to Q[x,y,z]

—-- it is NOT the same as F...
51x"3 + 82xyz + 19

F - H; -— ... but the difference is divisible by 101
-101/2x"3 - 46460/567xyz - 909

Use S;
QZP(H) - G; -- F and H have the same image in Z/(101) [x,y,z]

See Also: Accessing Other Rings (IV-8.11 pg.108), Bringln (VI-2.9 pg.167), Image (VI-9.9 pg.242), Ring
Mappings: the Image Function (IV-8.12 pg.109)

Chapter VI-18

R

VI-18.1 Radical

Radical(I:IDEAL) :IDEAL

syntax

Description

This function computes the radical of I using the algorithm described in the paper

M. Caboara, P.Conti and C. Traverso: “Yet Another Ideal Decomposition Algorithm.” Proc. AAECC-12,
pp 39-54, 1997, Lecture Notes in Computer Science, n.1255 Springer-Verlag.

NOTE: at the moment, this implementation works only if the coefficient ring is the rationals or has large
enough characteristic.

example
Use R ::= Qlx,y];
I := Ideal(x,y)"3;
Radical(I);
Ideal(y, x)

See Also: EquilsoDec (VI-5.5 pg.196), RadicalOfUnmixed (VI-18.2 pg.315)

VI-18.2 RadicalOfUnmixed

RadicalOfUnmixed(I:IDEAL) : IDEAL

syntax

Description

This function computes the radical of an unmixed ideal.

NOTE: at the moment, this implementation works only if the coefficient ring is the rationals or has large
enough characteristic.

example
Use R ::= Q[x,y];
I := Ideal(x"2 - y™2 - 4x + 4y, x - 2);
RadicalOfUnmixed(I);
Ideal(x"2 - y™2 - 4x + 4y, x - 2, y - 2)
Minimalized(It); -- the result may not be presented in its simplest form
Ideal(x - 2, y - 2)

See Also: EquilsoDec (VI-5.5 pg.196), Radical (VI-18.1 pg.315)

315

316 Chapter VI-18. R

VI-18.3 Rand

Rand () : INT
Rand (X:INT,Y:INT):INT

syntax

Description

In the first form, the function returns a random integer. In the second, it returns a random integer between X
and Y, inclusive. (Note: —X-Y— should be less than 233 to assure a more random distribution.)
NB: every time you restart CoCoA the sequence of random numbers will be the same (as in other program-

ming languages). If you want total randomness read “Seed” (VI-19.3 pg.330)
example

Rand () ;
6304433354

Rand (100,1);
14
Rand(-1074,0);
-2747

See Also: Randomize (VI-18.4 pg.316), Randomized (VI-18.5 pg.317), Seed (VI-19.3 pg.330)

VI-18.4 Randomize

Randomize (V:POLY) : POLY

syntax

where V is a variable containing a polynomial.

Description

This function replaces the coefficients of terms of the polynomial contained in V with randomly generated
coefficients. The result is stored in V, overwriting the original polynomial.

Note: It is possible that some coefficients will be replaced by zeroes, i.e., some terms from the original
polynomial may disappear in the result.

The similar function “Randomized” (VI-18.5 pg.317) performs the same operation, but returns the random-
ized polynomial without modifying the argument.

NB: every time you restart CoCoA the sequence of random numbers will be the same (as in other program-

ming languages). If you want total randomness read “Seed” (VI-19.3 pg.330)
example

Use R ::= Q[x];

F := 1+x+x72;

Randomized(F) ;

-2917104644x~2 + 3623608766x - 2302822308

Randomize (F) ;
F;
-1010266662x"2 + 1923761602x - 4065654277

VI-18.5. Randomized 317

See Also: Rand (VI-18.3 pg.316), Randomized (VI-18.5 pg.317), Seed (VI-19.3 pg.330)

VI-18.5 Randomized

Randomized (F:POLY or INT):POLY or INT

syntax

where V is a variable containing a polynomial.

Description

This function with a polynomial argument returns a polynomial obtained by replacing the coefficients of F' with
randomly generated coefficients. The original polynomial, F, is unaffected. With an integer argument, it returns
a random integer.

Note: It is possible that some coefficients will be replaced by zeroes, i.e., some terms from the original
polynomial may disappear in the result.

The similar function “Randomize” (VI-18.4 pg.316) performs the same operation, but returns NULL and
modifies the argument.

NB: every time you restart CoCoA the sequence of random numbers will be the same (as in other program-
ming languages). If you want total randomness read “Seed” (VI-19.3 pg.330)
example

Use R ::= Q[x];

F := 1+x+x72;

Randomized(F) ;

-2917104644x~2 + 3623608766x - 2302822308

Randomized (23) ;
-3997312402

Use R ::= Z/(7) [x,y];
Randomized (x~2+3x-5) ;
3x72 + 2x - 2

See Also: Rand (VI-18.3 pg.316), Randomize (VI-18.4 pg.316), Seed (VI-19.3 pg.330)

VI-18.6 Rank

Rank (M:MODULE) : INT
Rank (M:MAT) : INT

syntax

Description

This function computes the rank of M. For a module M this is defined as the vector space dimension of the
subspace generated by the generators of M over the quotient field of the base ring — contrast this with the
function NumComps which simply counts the number of components the module has.

example
Use R ::= Q[x,y,z];
Rank (Module([x,y,z,0]1));
1

Rank(Module([[1,2,3],[2,4,6]11));
1

318 Chapter VI-18. R

VI-18.7 RealRootRefine
syntax

RealRootRefine (Root:RECORD, Precision:RAT) :RECORD

Description

This functions computes a refinement of a real root of a univariate polynomial over Q to the desired precision
(width of isolating interval). The starting root must be a record produced by RealRoots.

example

RR := RealRoots(x"2-2);

RealRootRefine (RR[1], 1/2);

Record[CoefflList = [-8, 1456, -712], Inf = -91/64, Sup = -45/32]
RR := [RealRootRefine(Root, 10°(-20)) | Root In RR];
FloatStr(RR[1].Inf);

-1.414213562%10°0

See Also: RealRoots (VI-18.8 pg.318), RootBound (VI-18.27 pg.328)

VI-18.8 RealRoots

RealRoots(F:POLY) :LIST
RealRoots(F:POLY, Precision:RAT):LIST
RealRoots(F:POLY, Precision:RAT, Interval:[RAT,RAT]):LIST

syntax

Description

This function computes isolating intervals for the real roots of a univariate polyomial over Q. It returns the
list of the real roots, where a root is represented as a record containing either the exact root (if the fields Inf
and Sup are equal), or an open interval (Inf, Sup) containing the root. A third field (called CoeffList) has an
obscure meaning.

An optional second argument specifies the maximum width an isolating interval may have. An optional
third argument specifies a closed interval in which to search for roots.

The interval represented by a root record may be refined by using the function RealRootRefine.
example

RealRoots(x"2-2);

[Record[Coefflist = [8, -16, 7], Inf = -4, Sup = 0],
Record[CoefflList = [8, 0, -1], Inf = O, Sup = 4]1]

RR := RealRoots((x"2-2)*(x-1), 10°(-5));
FloatStr(RR[1].Inf); -- left end of interval
-1.414213657%10°0

FloatStr(RR[1].Sup); -- right end of interval
-1.414213419%10°0

RR := RealRoots(x"2-2, 10°(-20), [0, 2]);

RR[1].Inf; —-- incomprehensible

VI-18.9. Record 319

3339217363285192246361/2361183241434822606848

FloatStr(RR[1].Inf, 20); -- comprehensible
1.4142135623730950488%1070

See Also: RealRootRefine (VI-18.7 pg.318), RootBound (VI-18.27 pg.328)

VI-18.9 Record

Record[X_1 = OBJECT,...,X_n = 0BJECT]

syntax

where each X_i is a variable.

Description

This function returns a record with fields “X_17,...,“%_n”. The empty record is given by “Record[]”. The
records are “open” in the sense that new fields may be added after the record is first defined.

example
P := Record[Height = 10, Width = 5];
P.Height * P.Width;
50
P.Area := It;
P;
Record[Area = 50, Height = 10, Width = 5]
See Also: Fields (VI-6.5 pg.203)
VI-18.10 ReducedGBasis
syntax

ReducedGBasis(M:IDEAL, MODULE, or TAGGED("Quotient")):LIST

Description

If M is an ideal or module, this function returns a list whose components form a reduced Groebner basis for M
with respect to the term-ordering of the polynomial ring of M. If M is a quotient of a ring by an ideal I or of a
free module by a submodule N, then the Groebner basis for M is defined to be that of I or N, respectively.

example
Use R ::= Q[t,x,y,z];
I := Ideal(t"3-x,t"4-y,t"5-2);
GB.Start_GBasis(I); -- start the Interactive Groebner Framework
GB.Step(I); -- take one step towards computing the Groebner basis
I1.GBasis; -- the Groebner basis so far
[t°3 - x]
GB.Complete(I); -- finish the computation
I.GBasis;
[t"3 - x, -tx +y, -ty + z, -y"2 + xz, -x"2 + tz, t"2z - xy]
ReducedGBasis(I);
[t"3 - x, tx -y, ty - 2, y7°2 - xz, X"2 - tz, t72z - xy]

320 Chapter VI-18. R

See Also: Introduction to Groebner Bases in CoCoA (IV-13.1 pg.127), The Interactive Groebner Frame-
work (IV-13.3 pg.129), GBasis5, and more (VI-7.18 pg.217)

VI-18.11 RefineGCDFreeBasis

syntax
RefineGCDFreeBasis(B:LIST of INT, N:INT):LIST of INT

Description

This function computes a refined GCD free basis by adjoining a given integer to it. The value returned is
[NewB, N2] where NewB is the refined basis and N2 is the part of N coprime to every element of B.

example
B := GCDFreeBasis(GCDFreeBasis([Fact(10),Bin(20,10)]1);
[14175, 4, 46189]

RefineGCDFreeBasis (B, 15);

[[7, 3, 5, 4, 46189], 1]

See Also: GCDFreeBasis (VI-7.22 pg.220)

VI-18.12 RegularityIndex

syntax
Multiplicity(R:RING or TAGGED("Quotient")):INT

Description

This function computes the regularity index of a Hilbert function. The input might be expressed as a Hilbert
function or as the corresponding Hilbert series (computed with standard weights).

example
Use R ::= Qlx,y,z];
Quot := R/Ideal(x"3, y~2);
HilbertFn(Quot) ;
H(O) =1
H(1) = 3
H(2) = 6
H(3) = 10
H(4) = 15

H(t) =7t - 14 for t >=5

See Also: Hilbert (VI-8.16 pg.231), HilbertFn (VI-8.18 pg.232), HilbertSeries (VI-8.20 pg.232), Poincare
(VI-16.8 pg.307)

VI-18.13. Remove 321

VI-18.13 Remove

Remove (V:LIST,N:INT) :NULL

syntax

where V is a variable containing a list.

Description

This function removes the N-th component from L. (The function “WithoutNth” (VI-23.4 pg.358) returns the
list obtained by removing the N-th component of L without affecting L, itself.)

example
Use R ::= Qlx,y,z];
L := Indets();
L;
[x, y, z]
Remove(L,2);
L;
[x, z]

See Also: Insert (VI-9.16 pg.246), WithoutNth (VI-23.4 pg.358)

VI-18.14 Repeat

syntax

Repeat C Until B
Repeat C EndRepeat

where C is a sequence of commands and B is a boolean expression.

Description

In the first form, the command sequence C is repeated until B evaluates to FALSE. Unlike the “While” command,
C is executed at least once. Note that there is no “EndRepeat” following B. In the second form, the command
sequence C is repeated until a “Break” or “Return” is encountered within C.

example

Define GCD_Euclid(A,B)
Repeat
R := Mod(A,B);
A := B;
B := R;
Until B = 0;
Return A
EndDefine;

GCD_Euclid(6,15);

PrintLn(N);

If N = 5 Then Return; EndIf;
EndRepeat;
1

322 Chapter VI-18. R

O W N

See Also: For (VI-6.12 pg.206), Foreach (VI-6.13 pg.207), While (VI-23.3 pg.358)

VI-18.15 Res

syntax

Res (M) : TAGGED("$gb.Res")

where M is of type IDEAL or MODULE or TAGGED("Quotient").

Description

This function returns the minimal free resolution of M. If M is a quotient of a ring by an ideal I or a quotient
of a free module by a submodule N, then the resolution of M is defined to be that of I or N, respectively.

“Res” only works in the homogeneous context, and the coefficient ring must be a field.

example
Use R ::= Qlx,y,z];
I := Ideal(x,y,z"2);
Res(R/I);

0 --> R(-4) --> R(-2) (¥)R"2(-3) --> R"2(-1) ($)R(-2) -—> R

Describe It;

Mat ([
ly, x, z°2]
D
Mat ([
[x, z~2, 0],
[-y, 0, z"2],
[0, -y, -xJ
D
Mat ([
[z"2],
[-x],
[yl

For fine control and monitoring of Groebner basis calculations, including various types of truncations, see
“The Interactive Groebner Framework” (IV-13.3 pg.129) and “Introduction to Panels” (V-1.1 pg.139).

See Also: Example: Interactive Resolution Computation (IV-13.6 pg.130), Example: Truncations (IV-
13.7 pg.131), Introduction to Groebner Bases in CoCoA (IV-13.1 pg.127)

VI-18.16 Reset

syntax

Reset () :NULL

VI-18.17. ResetPanels

Description

This function resets the options in the CoCoA panels to their default values and executes “Seed(0)”.

Set Indentation;
Panel (GENERAL) ;

Reset () ;
Panel (GENERAL) ;

TraceSources.......
SuppressWarnings. ..
ComputationStack...

TraceSources.......
SuppressWarnings. ..
ComputationStack...

example

323

See Also: Introduction to Panels (V-1.1 pg.139), ResetPanels (VI-18.17 pg.323), Seed (VI-19.3 pg.330)

VI-18.17

ResetPanels

ResetPanels() :NULL

syntax

Description

This function resets the options in the CoCoA panels to their default values.

Set Indentation;
Panel (GENERAL) ;

ResetPanels();
Panel (GENERAL) ;

Indentation........
TraceSources.......
SuppressWarnings. ..
ComputationStack. ..

: FALSE
: FALSE
: FALSE
: FALSE
: FALSE

example

324 Chapter VI-18. R

SuppressWarnings... : FALSE
ComputationStack... : FALSE

See Also: Introduction to Panels (V-1.1 pg.139), Reset (VI-18.16 pg.322)

VI-18.18 Resultant

Resultant (F:POLY,G:POLY,X:INDET) : POLY

syntax

Description

This function returns the resultant of the polynomials F and G with respect to the indeterminate X.
example

Use R ::= Qlp,q,x];

F := x"3+px—q; G := Der(F,x);
Resultant (F,G,x);

4p~3 + 27972

See Also: Discriminant (VI-4.19 pg.191), Sylvester (VI-19.26 pg.342)

VI-18.19 Return

syntax

Return
Return E

where E is an expression.

Description

This function is used to exit from a structured command. The latter form returns the value of the expression
E to the user. If executed within a nested loop or inside a user-defined function, it breaks out back to the “top
level’, not just to the next higher loop. (For breaks to the next higher loop, see “Break” (VI-2.8 pg.167).)

example
Define Rev(L) -- reverse a list
If Len(L) < 2 Then Return L EndIf;
M := Rev(Tail(L)); -- recursive function call
H := Head(L);
Return Concat (M, [H]);
EndDefine;
Rev([1,2,3,4];
[4, 3, 2, 1]

—-- Another example: returning from a nested loop
For I := 1 To 5 Do
For J := 1 To 5 Do

If J > 2 Then Return Else Print([I,J], " ") EndIf
EndFor;
EndFor;
[1, 11 [1, 2]

See Also: Break (VI-2.8 pg.167), Define (VI-4.4 pg.182)

VI-18.20. Reverse, Reversed 325

VI-18.20 Reverse, Reversed

syntax

Reverse(V:LIST) :NULL
Reversed(L:LIST) :NULL

where V is a variable containing a list in the first case.

Description

The the function “Reverse” reverses the order of the elements of the list in V, returning Null. It does *not*

return the reversed list, but instead changes L itself. The function “Reversed” returns the reversed list without
changing L.

example
L := [1,2,3,4];
Reverse(L);
L; -- L has been modified
[4, 3, 2, 1]
M := [1,2,3,4];
Reversed(M); -- the reversed list is returned
[4, 3, 2, 1]
M; -- M has not been modified
[1, 2, 3, 4]

See Also: Sort (VI-19.12 pg.335), Sorted (VI-19.14 pg.336)

VI-18.21 RevLexMat

RevLexMat (N: INTEGER) : MAT

syntax

Description

This function return the matrix defining a standard ordering (which is not a term-ordering!).

example

RevLexMat (3);
Mat ([
[o, o, -11,
[o, -1, 01,
[-1, 0, 0]

See Also: Ord (VI-15.8 pg.302), Orderings (IV-8.6 pg.106), DegRevLexMat (VI-4.7 pg.185), DegLexMat
(VI-4.6 pg.184), LexMat (VI-12.6 pg.266), XelMat (VI-24.1 pg.361)

VI-18.22 Ring

syntax

Ring(R:RING) :RING

326 Chapter VI-18. R

Description

This function returns the ring with identifier R.
example

Use R ::= Qlx,y,z];

S ::=2/(3)[a,b];

Ring(8);

Z/(3) [a,b]

Ring(R) ;

Qlx,y,z]

R; -- same as above, as long as there is no variable with identifier
-- R in the working memory

Qlx,y,z]

CurrentRing() ;

Qlx,y,z]

R :=5; -- a variable with identifier R; now there are two objects

-- with the identifier R: a variable and a ring

Memory(); -- the variables of the working memory
[llItll’ llRll]

RingEnvs(); -- the list of rings

[”Q", ||Qt|l’ ||R||’ ||S||’ ||Z||]

Ring(R); -- the ring with identifier R

Qlx,y,z]

See Also: CurrentRing (VI-3.26 pg.180), Introduction to Rings (IV-8.1 pg.103), RingEnv (VI-18.23
pg.326), RingEnvs (VI-18.24 pg.327)

VI-18.23 RingEnv

syntax
RingEnv () : STRING

RingEnv(E:POLY, IDEAL, MODULE, RATFUN, VECTOR):STRING

Description

The first form of this function returns the identifier for the current ring. The second form returns the identifier
of the ring on which the object E is dependent.

example

Use R ::= Qlx,y,z];

I := Ideal(x,y); -- an object dependent on R

S ::=2Z2/(3)[a,b]; -- define S, but do not make S active

RingEnv(); -- the current ring
R

RingEnvs(); -- your result here could be different
['qQ", "@t", "R", "S", "z"]

VI-18.24. RingEnvs 327

Ring(8);
Z/(3) [a,b]

Use S; -- S is now the active ring
I; -- I is labeled by its ring. The label appears explicitly when R
-- is not the current ring.
R :: Ideal(x, y)

RingEnv(I); -- the ring labeling I

CurrentRing();
Qlx,y,z]

Use Ql[a,b];

RingEnv();
CurrentRingEnv

See Also: CurrentRing (VI-3.26 pg.180), Ring (VI-18.22 pg.325), RingEnvs (VI-18.24 pg.327), RingEn-
vSet (VI-18.25 pg.327)

VI-18.24 RingEnvs

syntax

RingEnvs () : TAGGED

Description

This function returns the tagged list of identifiers for the existing rings.
example

R_1 ::= Q[a,b,c];

R_2 ::= Qlx,y];

RingEnvs () ; —-— your result may be different
I:IIQII’ IIQtII’ llRII’ llR_lll’ IIR_2II, llzll]

See Also: CurrentRing (VI-3.26 pg.180), Ring (VI-18.22 pg.325), RingEnv (VI-18.23 pg.326)

VI-18.25 RingEnvSet

syntax
RingEnvSet (E:LIST, MAT, POLY, IDEAL, MODULE, RATFUN, VECTOR):LIST of STRING

Description

This function returns the list of the identifiers of the rings on which the object E is dependent. Similar
to “RingEnv” (VI-18.23 pg.326), this function also works on lists and matrices and returns the set of ring
environments of all entries. ...needless to say that it may be quite slow on big inputs!

example

Use R ::= Q[x,y,z];
L1 := [x, yl;
L2 := [x, y, 0, 5/4];

328 Chapter VI-18. R

Use S ::= Z/(3)[a,b];
RingEnvSet (L1);
[R]
RingEnvSet (L2);
(R, 1]
RingEnvSet ([L2, a+b]l);
(R, , S]

See Also: CurrentRing (VI-3.26 pg.180), Ring (VI-18.22 pg.325), RingEnv (VI-18.23 pg.326), RingEnvs
(VI-18.24 pg.327)

VI-18.26 RMap

syntax

RMap (L:LIST)) : TAGGED ("RMap")

Description

See “Image” (VI-9.9 pg.242).

See Also: Accessing Other Rings (IV-8.11 pg.108), BringIn (VI-2.9 pg.167), Image (V1-9.9 pg.242), QZP
(VI-17.3 pg.314), ZPQ (VI-25.1 pg.363), Ring Mappings: the Image Function (IV-8.12 pg.109), Subst (VI-19.23
pg.340), Using (VI-21.5 pg.353)

VI-18.27 RootBound

RootBound (F:POLY) : INT

syntax

Description

This function computes a bound on the absolute values of the complex roots of a univariate polynomial over Q.
example

RootBound (x~2-2);

See Also: RealRootRefine (VI-18.7 pg.318), RealRoots (VI-18.8 pg.318)

Chapter VI-19

S

VI-19.1 Saturation

Saturation(I:IDEAL,J:IDEAL) : IDEAL

syntax

Description

This function returns the saturation of I with respect to J: the ideal of polynomials F such that F*G is in I for
all G in J¢ for some positive integer d.
The coeflicient ring must be a field.

example
Use R ::= Q[x,y,z];
I := Ideal(x-z, y-2z);
J := Ideal(x-2z, y-z);
K := Intersection(I, J); -- ideal of two points in the
-- projective plane
L := Intersection(K, Ideal(x,y,z)"3); -- add an irrelevant component
Hilbert(R/L);
H(O) =1
H(1) =3
H(2) = 6
H(t) =2 for t >= 3
Saturation(L, Ideal(x,y,z)) = K; -- saturating gets rid of the
-- irrelevant component
TRUE

See Also: Colon (VI-3.17 pg.176), HColon (VI-8.12 pg.228), HSaturation (VI-8.26 pg.235), GBasis5, and
more (VI-7.18 pg.217)

VI-19.2 ScalarProduct

ScalarProduct (L, M) :0BJECT

syntax

where each of L and M is of type VECTOR or LIST

Description

This function returns the sum of the product of the components of L and M; precisely:
ScalarProduct(L,M) = Sum([L[I]*M[I]—I In 1..Min(Len(L),Len(M))])).

329

330 Chapter VI-19. S

Thus, the function works even if the lengths of L and M are different. The function works whenever the
product of the components of L and M are defined (see “Algebraic Operators” (I11-3.2 pg.51)).

example

ScalarProduct([1,2,3],[5,0,-1]);

Use R ::= Qlx,y];
ScalarProduct ([Ideal(x,y),Ideal(x"2-xy)], [x"2,y1);
Ideal(x"3, x"2y, x"2y - xy~2)

See Also: Algebraic Operators (I11-3.2 pg.51)

VI-19.3 Seed

Seed (N:INT) :INT

syntax

Description

This function seeds the random number generator, “Rand” (VI-18.3 pg.316).
NB: every time you restart CoCoA the sequence of random numbers will be the same (as in other program-
ming languages). If you want total randomness see the example below.

example

Seed(5);

Rand () ;

1991603592

Rand () ;

-1650270230

Seed(5); -- with the same seed, "Rand" generates the same sequence
Rand () ;

1991603592

Rand () ;

-1650270230

—-- Total randomness:

-- the following shows how to make a ramdom seed based on the date.
D := Date();

D;

Mon Mar 02 14:43:44 1998

Seed (Sum(Ascii(D)));

See Also: Rand (VI-18.3 pg.316)

VI-19.4 SeparatorsOfPoints

syntax

Separators0fPoints (Points:LIST) :LIST

VI-19.5. SeparatorsOfProjectivePoints 331

where Points is a list of lists of coefficients representing a set of
distinct points in affine space.

Description

This function computes separators for the points: that is, for each point a polynomial is determined whose
value is 1 at that point and 0 at all the others. The separators yielded are reduced with respect to the reduced
Groebner basis which would be found by “Ideal0fPoints” (VI-9.4 pg.239).

NOTE:

* the current ring must have at least as many indeterminates as the dimension of the space in which the
points lie;

* the base field for the space in which the points lie is taken to be the coefficient ring, which should be a
field;

* in the polynomials returned the first coordinate in the space is taken to correspond to the first indetermi-
nate, the second to the second, and so on;

* the separators are in the same order as the points (i.e. the first separator is the one corresponding the
first point, and so on);

*if the number of points is large, say 100 or more, the returned value can be very large. To avoid possible
problems when printing such values as a single item we recommend printing out the elements one at a time as
in this example:

S := Separators0fPoints(Pts);
Foreach Element In S Do
PrintLn Element;

EndForeach;
For separators of points in projective space, see “Separators0fProjectivePoints” (VI-19.5 pg.331).
example
Use R ::= Qlx,y];
Points := [[1, 2], [3, 41, [5, 611;
S := SeparatorsOfPoints(Points); -- compute the separators
S5

[1/8y°2 - 5/4y + 3, -1/4y"2 + 2y - 3, 1/8y"2 - 3/4y + 1]

[[(Eval(F, P) | P In Points] | F In S]; -- verify separators
(1, o, ol, o, 1, o], [0, O, 1]]

See Also: GenericPoints (VI-7.23 pg.221), IdealAndSeparatorsOfPoints (VI-9.2 pg.237), Ideal AndSepara-
torsOfProjectivePoints (VI-9.3 pg.238), IdealOfPoints (VI-9.4 pg.239), IdealOfProjectivePoints (VI-9.5 pg.240),
Interpolate (VI-9.17 pg.247), SeparatorsOfProjectivePoints (VI-19.5 pg.331)

VI-19.5 SeparatorsOfProjectivePoints

syntax
Separators0fProjectivePoints (Points:LIST) :LIST

where Points is a list of lists of coefficients representing a set of
distinct points in projective space.

Description

This function computes separators for the points: that is, for each point a homogeneous polynomial is determined
whose value is non-zero at that point and zero at all the others. (Actually, choosing the values listed in Points
as representatives for the homogeneous coordinates of the corresponding points in projective space, the non-zero
value will be 1.) The separators yielded are reduced with respect to the reduced Groebner basis which would
be found by “IdealOfProjectivePoints” (VI-9.5 pg.240).

332 Chapter VI-19. S

NOTE:

* the current ring must have at least one more indeterminate than the dimension of the projective space in
which the points lie, i.e, at least as many indeterminates as the length of an element of the input, Points;

* the base field for the space in which the points lie is taken to be the coefficient ring, which should be a
field;

* in the polynomials returned the first coordinate in the space is taken to correspond to the first indetermi-
nate, the second to the second, and so on;

* the separators are in the same order as the points (i.e. the first separator is the one corresponding the
first point, and so on);

* if the number of points is large, say 100 or more, the returned value can be very large. To avoid possible
problems when printing such values as a single item we recommend printing out the elements one at a time as
in this example:

S := SeparatorsOfProjectivePoints(Pts);
Foreach Element In S Do

PrintLn Element;
EndForeach;

For separators of points in affine space, see “Separators0fPoints” (VI-19.4 pg.330).
example

Use R ::= Qlx,y,z];

Points := [[0,0,1],[1/2,1,1],[0,1,01];

S := SeparatorsOfProjectivePoints(Points);
S;

[-2x + z, 2x, -2x + y]

[[Eval(F, P) | P In Points] | F In S]; -- verify separators
(rs, o, o1, fo, 1, o1, (o, o, 111l

See Also: GenericPoints (VI-7.23 pg.221), IdealAndSeparatorsOfPoints (VI-9.2 pg.237), Ideal AndSepara-
torsOfProjectivePoints (VI-9.3 pg.238), Ideal OfPoints (VI-9.4 pg.239), IdealOfProjectivePoints (VI-9.5 pg.240),
Interpolate (VI-9.17 pg.247), SeparatorsOfPoints (VI-19.4 pg.330)

VI-19.6 Set-Unset

Set O
Set 0 := B:BOOL
UnSet O

syntax

where 0 is a panel option.

Description

See “Unset” (VI-21.2 pg.351).
See Also: Unset (VI-21.2 pg.351), Introduction to Panels (V-1.1 pg.139), Panel (VI-16.2 pg.305), Option
(VI-15.7 pg.302), Panels (VI-16.3 pg.306)

VI-19.7 Shape

syntax
Shape (E:LIST) :LIST (of TYPE)

Shape (E:MAT) :MAT (of TYPE)

Shape (E:RECORD) :RECORD (of TYPE)

Shape (E:OTHER) : TYPE

where OTHER stands for a type which is not LIST, MAT, or RECORD.

VI-19.8. Sign 333

Description
This function returns the extended list of types involved in the expression E as outlined below:

Type(E) = LIST
In this case, Shape(E) is the list whose i-th component is the type
of the i-th component of E.

Type(E) = MAT
In this case, Shape(E) is a matrix with (i,j)-th entry equal to the
type of the (i,j)-th entry of E.

Type(E) = RECORD
In this case, Shape(E) is a record whose fields are the types of the
fields of E.

Otherwise, “Shape(E)” is the type of E.

example
Use R ::= Q[x];
L := [1,[1,"a"],x"2-x];
Shape (L) ;

[INT, [INT, STRING], POLY]

R := Record[Name = "test", Contents = L];
Shape (R) ;
Record[Contents = [INT, [INT, STRING], POLY], Name = STRING]

It.Name;
STRING

There are undocumented functions, “IsSubShape” and “IsSubShapeOfSome”, for determining if the “shape”
of a CoCoA expression is a “subshape” of another. To see the code for these functions, enter

Describe Function("$misc.IsSubShape");
Describe Function("$misc.IsSubShapeOfSome") ;

See Also: Data Types (I11-2.6 pg.48)

VI-19.8 Sign

syntax
Sign(X:INT of RAT):INT
Description
This function returns -1 if X j 0, 0 if X = 0, and 1 if X ; 0. X must be INT or RAT.
example
Sign(123);
1
Sign(-5/2);
-1
VI-19.9 Size
syntax

Size(E:0BJECT) : INT

334 Chapter VI-19. S

Description

This function returns the amount of memory used by the object E, expressed in words (1 word = 4 bytes = 32
bits).

example

Use R ::= Q[x,y];
Size(1);

Size(x);

32
Size([x,y1);
64

See Also: Count (VI-3.25 pg.180), Len (VI-12.5 pg.265)

VI-19.10 Skip

syntax

Skip

Description

This command does nothing. I suppose it might be used to make the structure of a user-defined function more
clear. It is probably at least as useful as the function “Tao”.

example

Skip;

VI-19.11 SmoothFactor
syntax

SmoothFactor (N:INT, MaxP:INT):[LIST of INT, INT]

Description

This function finds the small prime factors of an integer. It simply tries dividing by all primes up to the given
bound. The result is a list of the prime factors found together with the unfactored part of N. Be careful about
supplying large values for MaxP (e.g. greater than a million): the function could take a very long time. MaxP
must be positive.

example

SmoothFactor(100,3);
[[2, 2], 25]

SmoothFactor (123456789,3700) ;

VI-19.12. Sort 335

[[3, 3, 3607, 3803], 1]

See Also: IsPrime (VI-9.34 pg.254), IsPPrime (VI-9.33 pg.254)

VI-19.12 Sort

Sort (V:LIST) :NULL

syntax

where V is a variable containing a list.

Description

This function sorts the elements of the list in V with respect to the default comparisons related to their types;
it overwrites V and returns NULL.

For more on the default comparisons, see “Relational Operators” (I11-3.3 pg.52) in the chapter on operators.
For more complicated sorting, see “SortBy” (VI-19.13 pg.335), “SortedBy” (VI-19.15 pg.336).

example

L := [3,2,1];
Sort(L); -- this returns nothing and modifies L

Use R ::= Q[x,y,z];

L := [x,y,2];

Sort(L); -- this returns nothing and modifies L
L[1];

Sort([y,x,z,x"2]); -- this returns nothing!!
Sorted([y,x,x"2]); -- this returns the sorted list
[y, x, x72]

See Also: Relational Operators (I11-3.3 pg.52), Sorted (VI-19.14 pg.336), SortBy (VI-19.13 pg.335),
SortedBy (VI-19.15 pg.336)

VI-19.13 SortBy

syntax

SortBy(V:LIST,F:FUNCTION) :NULL

where V is a variable containing a list and F is a boolean-valued
comparison function of two arguments (e.g. representing ‘‘{\it less than}’’).

Description

This function sorts the elements of the list in V with respect to the comparisons made by F; it overwrites V
and returns NULL.

The comparison function F takes two arguments and returns TRUE if the first argument is less than the
second, otherwise it returns FALSE. The sorted list is in increasing order.

Note that if both F(A,B) and F(B,A) return TRUE, then A and B are viewed as being equal.

336 Chapter VI-19. S

example

Define ByLength(S,T) -- define the sorting function
Return Len(S) > Len(T);

EndDefine;

M := ["dog","mouse","cat"];

SortBy(M, Function("ByLength"));

M;

["mouse", "dog", "cat"]

See Also: Sort (VI-19.12 pg.335), Sorted (VI-19.14 pg.336), SortedBy (VI-19.15 pg.336)

VI-19.14 Sorted

Sorted(L:LIST) :LIST

syntax

where V is a variable containing a list.

Description

This function returns the list of the sorted elements of L without affecting L, itself.
For more on the default comparisons, see “Relational Operators” (I11I-3.3 pg.52) in the chapter on operators.

For more complicated sorting, see “SortBy” (VI-19.13 pg.335), “SortedBy” (VI-19.15 pg.336).
example

L := [3,2,1];
Sorted(L);

[1, 2, 3]

Use R ::= Qlx,y,z];

L := [x,y,2z];
Sorted(L);

[z, v, x]
Sorted([y,x,z,x"2]);
[z, y, x, x"2]
Sorted([3,1,1,2]);

[1, 1, 2, 3]
Sorted(["b","c","a"]);
[Ha"’ ||b|l’ "C"]
Sorted([Ideal(x,y),Ideal(x)]); -- ideals are ordered by containment
[Ideal(x), Ideal(x, y)]

See Also: Relational Operators (I11-3.3 pg.52), SortBy (VI-19.13 pg.335), SortedBy (VI-19.15 pg.336),
Sort (VI-19.12 pg.335)

VI-19.15 SortedBy

syntax

SortedBy (L:LIST,F:FUNCTION) :LIST

where V is a variable containing a list and F is a boolean-valued
comparison function of two arguments (e.g. representing ‘‘{\it less than}’’).

VI-19.16. Source 337

Description

This function returns the list of the sorted elements of L without affecting L, itself. As for “SortBy” (VI-19.13
pg.335), the comparison function F takes two arguments and returns TRUE if the first argument is less than
the second, otherwise it returns FALSE. The sorted list is in increasing order.

Note that if both F(A,B) and F(B,A) return TRUE, then A and B are viewed as being equal.

example

Define ByLength(S,T) -- define the sorting function
Return Len(S) > Len(T);

EndDefine;

M := ["dog","mouse","cat"];

SortedBy (M,Function("ByLength"));

[llmousell s ||dog|l’ llcatll]

M; -- M is not changed

["dog", "mouse", llcatll]

Sorted(M); -- the function "Sort" sorts using the default ordering:
-- in this case, alphabetical order.

["cat", "dOg", ||mouseu]

SortBy(M,Function("ByLength")); -- sort M in place, changing M
M;
["mouse", "dOg", "Cat"]

See Also: Sort (VI-19.12 pg.335), Sorted (VI-19.14 pg.336), SortBy (VI-19.13 pg.335)

VI-19.16 Source

Source S:STRING
<< S:STRING

syntax

Description

This command executes all CoCoA commands in the file or device named S. A typical use of “Source” is to
collect user-defined functions and variables in a text file, say, “MyFile.coc” and then execute:

Source "MyFile.coc";
or, equivalently,
<< "MyFile.coc";
Functions and variables read in from a file in this way will erase functions and variables with identical names

that may already exist. This can be avoided by using packages. Repeatedly used functions can be read into
CoCoA at start-up by using “Source” in the “userinit.coc” file.

See Also: Introduction to IO (III-7.1 pg.61), Introduction to Packages (I11-9.1 pg.71), User Initialization
(V-3.1 pg.149), Shortcuts (VI-0.1 pg.155)

VI-19.17 Spaces

syntax

Spaces (N:INT) : STRING

338 Chapter VI-19. S

Description

This function returns a string consisting of N spaces.

example
L := "a" + Spaces(5) + "b";
L;
a b

See Also: Dashes (VI-4.1 pg.181), Equals (VI-5.4 pg.196)

VI-19.18 Sprint

syntax

Sprint (E:0BJECT) : STRING

Description

This function takes any CoCoA expression and converts its value to a string. One use is to check for extremely
long output before printing in a CoCoA window.

example

Use R ::= Q[x,y];

I := Ideal(x,y);

J := Sprint(I);

I;

Ideal(x, y)

J; -- The output for I and J looks the same, but ...
Ideal(x, y)

Type(I); -- I is an ideal, and

IDEAL

Type(J); -- J is just the string "Ideal(x, y)".
STRING

Len(J); -- J has 11 characters
11

See Also: Introduction to IO (ITI-7.1 pg.61), 10.SprintTrunc (VI-9.22 pg.249), Print (VI-16.16 pg.310),
PrintLn (VI-16.18 pg.311)

VI-19.19 StarPrint

syntax
StarPrint (F:POLY) :NULL
StarPrintFold(F:POLY, LineWidth:INT)

VI-19.20. Starting 339

Description

These functions print the polynomial F with asterisks added to denote multiplications. They may be useful when
cutting and pasting from CoCoA to other mathematical software (Gap, Maple, Macaulay, Singular,..). StarPrint
inserts newline characters (only between terms) to avoid lines much longer than about 70 characters. If a different
approximate maximum length is desired this may be specified as the second argument to StarPrintFold; a
negative value means no line length limit.

example

Use R ::= Q[x,y];

F := x"3+2xy-y~2;

StarPrint (F);

1xx " 3+2%x*y—1*xy~2

StarPrintFold(F,0); -- this will print one term per line
1*%x°3

+2*x*y

—1xy~2

See Also: Latex (VI-12.2 pg.263)

VI-19.20 Starting

syntax

Starting(S:STRING) :LIST of STRING

Description

This function returns a list of all CoCoA functions starting with the string “S”. In general, this list will include
undocumented commands. For these, one may find some information using “Describe Function("Fn_Name")”
or “Describe Function("$PackageName.Fn_Name")”.

example

Starting("Su");
["SubstPoly", "Support", "Subsets", "SubSet", "Submat", "Sum", "Subst"]

See Also: Other Help (V-2.4 pg.146)

VI-19.21 Submat
syntax

Submat (M:LIST or MAT,R:LIST of INT,C:LIST of INT):MAT

Description

This function returns the submatrix of M formed by the rows listed in R and the columns listed in C. If M is a
list, it is interpreted as a matrix in the natural way.
example
M := Mat([[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15]1);
Submat (M, [1,3],3..5);

Mat ([
(3, 4, 5],
[13, 14, 15]
D

L := [[1,2,3] > [4:5,6]];

340 Chapter VI-19. S

Submat (L, [2],[1,3]);
Mat ([
[4, 6]

See Also: Introduction to Matrices (IV-7.1 pg.101), Minors (VI-13.15 pg.281)

VI-19.22 Subsets

Subsets(S:LIST):LIST
Subsets(S:LIST, N:INT):LIST

syntax

Description

This function computes all sublists (subsets) of a list (set). If N is specified, it computes all sublists of cardinality
N.

example

Subsets([1, 4, 7]1);

(c1, 71, 41, 14, 71, 11, 1, 71, [1, 41, [1, 4, 71]
Subsets([1, 4, 71, 2);

[[1’ 4]’ [1, 7]’ [4’ 7]]

Subsets([2,3,3]); -- list with repeated entries
(1, a1, 31, I8, 31, 21, [2, 31, [2, 31, [2, 3, 3]]
Subsets (MakeSet ([2,3,3]1));

(C 1, 031, [21, [2, 3]1]

See Also: IsSubset (VI-9.39 pg.256), Partitions (VI-16.4 pg.306), Permutations (VI-16.5 pg.306), MakeSet
(VI-13.2 pg.273), Tuples (VI-20.8 pg.348)

VI-19.23 Subst

Subst (E:0BJECT,X,F) : 0BJECT
Subst (E:0BJECT, [[X_1,F_1],...,[X_r,F_r]]) :0BJECT

syntax

where each X or X_i is an indeterminate and each F or F_i is a number,
polynomial, or rational function.

Description

The first form of this function substitutes “F_i” for “X_i” in the expression E. The second form is a shorthand
for the first in the case of a single indeterminate. When substituting for the indeterminates in order, it is easier
to use “Eval” (VI-5.7 pg.197).

example

Use R ::= Q[x,y,z,t];
F = x+y+z+t72;

Subst (F,x,-2);
t72+y+z -2

Subst (F,x,z/y);

VI-19.24. Sum 341

(yt*2 + y°2 + yz + z)/y

Subst(F, [[x,x"2],[y,y"3],[z,t"5]1);

t°5 + y"3 + x72 + £72

Eval(F, [x"2,y"3,t75]); -- the same thing as above

t°5 +y"3 +x72+ t72

MySubst := [[y,1],[t,3z-x11;

Subst (xyzt,MySubst); -- substitute into the function xyzt
-x"2z + 3xz"2

See Also: Eval (VI-5.7 pg.197), Evaluation of Polynomials (IV-9.2 pg.114), Image (VI-9.9 pg.242), QZP
(VI-17.3 pg.314), ZPQ (VI-25.1 pg.363), Substitutions (I1-2.15 pg.33)

VI-19.24 Sum

Product (L:List) :0BJECT
Sum(L:List) :0BJECT

syntax

Description

This function returns the sum of the objects in the list L.

example
Use R ::= Q[x,y];
Sum([3,x,y°2]);
y2+x+3

Sum(1..40) = Bin(41,2);
TRUE

Sum(["CII , "OC" , lloall]) ;
cocoa

See Also: Algebraic Operators (I11-3.2 pg.51), Product (VI-16.19 pg.312)

VI-19.25 Support

syntax

Support (F:POLY or VECTOR):LIST

Description

This function returns the list of terms of F. To get a list of monomials, which includes coefficients, use
“Monomials” (VI-13.21 pg.283).

example

Use R ::= Qlx,y];

F = 3x"2-4xy+y~3+3;
Support (F) ;

[y"3, x°2, xy, 1]
Monomials (F);

[y~3, 3x~2, -4xy, 3]

342 Chapter VI-19. S

Support (Vector(x~2y,x"3-3y"2,34)) ;
[Vector(0, x°3, 0), Vector(x~2y, 0, 0), Vector(0, y°2, 0), Vector(0, 0, 1)]

See Also: Coefficients (VI-3.15 pg.175), Monomials (VI-13.21 pg.283)

VI-19.26 Sylvester

syntax
Sylvester (F:POLY,G:POLY,X: INDET)

Description

This function returns the Sylvester matrix of the polynomials F and G with respect to the indeterminate X.
This is the matrix used to calculate the resultant.

example
Use R ::= Qlp,q,x];
F := x"3+px-q; G := Der(F,x);
Sylvester(F,G,x);
Mat ([
(1, 0, p, —-q, 01,
(o, 1, 0, p, -ql,
(3, 0, p, 0, 0],
(o, 3, 0, p, 01,
(0o, 0, 3, 0, p]
D
Det (Sylvester(F,G,x)) = Resultant(F,G,x);
TRUE
See Also: Resultant (VI-18.18 pg.324)
VI-19.27 Syz
syntax

Syz(L:LIST of POLY):MODULE
Syz(L:LIST of VECTOR):MODULE
Syz (M:IDEAL or MODULE, Index:INT):MODULE

Description

In the first two forms this function computes the syzygy module of a list of polynomials or vectors. In the
last form this function returns the specified syzygy module of the minimal free resolution of M which must be
homogeneous. As a side effect, it computes the Groebner basis of M.

The coefficient ring must be a field.

example
Use R ::= Qlx,y,2];
Syz([x"2-y,xy-z,xy]l) ;
Module ([0, xy, -xy + z], [z, x"2 -y, -x"2 + y], [yz, -y°2, y"2 - xz],
[xy, 0, -x"2 + y])
I := Ideal(x"2-yz, xy-z~2, xyz);
Syz(I,0);
Module([x"2 - yz], [xy - z"2]1, [xyzl)

VI-19.28. SyzMinGens 343

Syz(I,1);
Module([-x"2 + yz, xy - z"2, 0], [xz"2, -yz"2, -y"2 + xz], [2"3, O,
-xy + z°2], [0, 273, -x"2 + yz])
Syz(I,2);
Module([0, z, -x, yl, [-z"2, -x, y, -z])
Syz(I,3);
Module ([0])
Res(I);
0 -=> R"2(-6) --> R(-4) (+)R"3(-5) --> R"2(-2) (+¥)R(-3)

For fine control and monitoring of Groebner basis calculations, see
‘‘The Interactive Groebner Framework’’ (\ref{The Interactive Groebner Framework} pg.\pageref{The Inter

See Also: Introduction to Groebner Bases in CoCoA (IV-13.1 pg.127), GBasis5, and more (VI-7.18
pg.217)

VI-19.28 SyzMinGens

syntax

SyzMinGens: FUNCTION ELIMINATED

Description

The SyzMinGens function has been removed.
See Also: Syz (VI-19.27 pg.342), SyzOfGens (VI-19.29 pg.343)

VI-19.29 SyzOfGens

syntax
Syz0fGens (M: IDEAL, MODULE, or TAGGED("Quotient")) :MODULE

Description

If M is an ideal or module, this function calculates the syzygy module for the given set of generators of M. If
M is a quotient of a ring by an ideal I or a quotient of a free module by a submodule N, then this function
calculates the syzygy module for the given set of generators of I or N, respectively.

The coefficient ring must be a field.

example
Use R ::= Qlx,y];
I := Ideal(x,y,x+y);
Syz0£Gens (I);

Module([1, 1, -11, [y, -x, 01)

See Also: Syz (VI-19.27 pg.342), SyzMinGens (VI-19.28 pg.343)

344 Chapter VI-19. S

Chapter VI-20

T

VI-20.1 Tag

syntax

Tag (E:0BJECT) : STRING

Description

If E is a tagged object, this function returns the tag of E; otherwise, it returns the empty string.
example

L := Tagged(3,"MyTag");
Type (L) ;
TAGGED ("MyTag")

See Also: Tagged Printing (I11-7.6 pg.63), Tagged (VI-20.2 pg.345), Untagged (VI-21.3 pg.352)

VI-20.2 Tagged

syntax
Tagged (E:0BJECT, S:STRING) : TAGGED(S)

Description

This first function returns the object E, tagged with the string S. Tagging is used for pretty printing of objects.
See the reference listed below.

example
L := [1,2,3];
M := Tagged(L,"MyTag");
Type (L) ;
LIST
Type(M) ;
TAGGED ("MyTag")

Type (Untagged (M)) ;
LIST

See Also: Tagged Printing (I11-7.6 pg.63), Tag (VI-20.1 pg.345), Untagged (VI-21.3 pg.352)

345

346 Chapter VI-20. T

VI-20.3 Tail

Tail(L:LIST) :0BJECT

syntax

Description

This function returns the list obtained from L by removing its first element. It cannot be applied to the empty
list.
example

Tail([1,2,31);
[2, 3]

See Also: First (VI-6.6 pg.203), Head (VI-8.13 pg.229), Last (VI-12.1 pg.263)

VI-20.4 TensorMat

TensorMat (M:Mat, N:Mat) :MAT

syntax

Description

This function returns the tensor product of two matrices.

example
Use R ::= Qx,y,z,w];
TensorMat (Mat ([[1,-1],[2,-2],[3,-3]11) ,Mat([[x,y], [z,w]]));
Mat ([

[x, vy, -x, -yl,

[z, w, -z, -w],

[2x, 2y, -2x, -2y],

[2z, 2w, -2z, -2w],

[3x, 3y, -3x, -3yl,

[3z, 3w, -3z, -3w]

VI-20.5 Toric

Toric(L:LIST of BINOMIAL) :IDEAL
Toric(L:LIST of BINOMIAL,X:LIST of INDETS):IDEAL
Toric(M:MAT or LIST of LIST):IDEAL

syntax

where M is a matrix of integers with no zero column. Elements of L
must be homogeneous (w.r.t. the first row of the weights matrix).

Description

These functions return the saturation of an ideal, I, generated by binomials. In the first two cases, I is the
ideal generated by the binomials in L. To describe the ideal in the last case, let K be the integral elements in
the kernel of M. For each k in K, we can write k = k(+) - k(-) where the i-th component of k(+) is the i-th
component of k, if positive, otherwise zero. Then I is the ideal generated by the binomials “x"k(+) - x"k(-)”
as k ranges over K. Note: successive calls to this last form of the function may produce different generators for
the saturation.

The first and third functions return the saturation of I. For the second function, if the saturation of I with
respect to the variables in X happens to equal the saturation of I, then the saturation of I is returned. Otherwise,

VI-20.6. Toric.CheckInput 347

an ideal *containing® the saturation with respect to the given variables is returned. The point is that if one
knows, a priori, that the saturation of I can be obtained by saturating with respect to a subset of the variables,
the second function may be used to save time.

For more details, see the article: A.M. Bigatti, R. La Scala, L. Robbiano, “Computing Toric Ideals,” Preprint
(1998). The article describes three different algorithms; the one implemented in CoCoA is “EATI”. The first
two examples below are motivated by B. Sturmfels, “Groebner Bases and Convex Polytopes,” Chapter 6, p. 51.
They count the number of homogeneous primitive partition identities of degrees 8 and 9.
example

Use Q[x[1..8]1,y[1..8]]1;

HPPI8 := [x[1]°I x[I+2] y[2]"(I+1) - y[1]1°I y[I+2] x[2]"(I+1) | I In
1..6];

BL := Toric(HPPI8, [x[1],y[2]11);

Len(BL.Gens);

340

Use Q[x[1..9]1,y[1..9]1]1;

HPPI9 := [x[1]°T x[I+2] y[2]"(I+1) - y[1]1°I y[I+2] x[2]"(I+1) | I In
1..71;

BL := Toric(HPPI9, [x[1],y[2]11);

Len(BL.Gens);

Use R ::= Qlx,y,z,w];
Toric(Ideal(xz-y~2, xw-yz));
Ideal(-y~"2 + xz, -yz + xw, 2°2 - yw)
Toric([xz-y~2, xw-yzl);

Ideal(-y"2 + xz, -yz + xw, z"2 - yw)

Use R ::= Qlx,y,z];
Toric([[1,3,2],[3,4,8]11);
Ideal(-x"16 + y~2z"5)
Toric(Mat([[1,3,2],[3,4,8]11));
Ideal(-x"16 + y~2z75)

See Also: Toric.CheckInput (VI-20.6 pg.347)

VI1-20.6 Toric.CheckInput

syntax
Toric.CheckInput (E:0BJECT) : BOOL
Toric.CheckInput (E:0BJECT,X:LIST) :BOOL

Description

This function checks if E or (E,X) is suitable input for “Toric” (VI-20.5 pg.346). Thus, E should be either a
list of homogeneous binomials (without coefficients) or a matrix of non-negative integers. In the former case, X
must be a list of indeterminates (in the latter, X would be ignored by “Toric” (VI-20.5 pg.346) anyway).

example

Use R ::= Q[x,y,z];
Toric.CheckInput([[1,2,3,4],[4,5,6,711);

348 Chapter VI-20. T

Toric.CheckInput([[-1,2],[3,4]11);

ERROR: entries must be non-negative integers

CONTEXT: Return(Error(Toric_IntMatrix))

Toric.CheckInput([xy-z"2,x"3-y"2z]);

TRUE

Toric.CheckInput ([3xy-z"2,x"3-y"2z]); -- the binomials should not
-- have coefficients

ERROR: generators must be of type: power-product - power-product

CONTEXT: Return(Error(Toric_PP))

Toric.CheckInput([xy-z~2,x"3-y"2z], [x]);

TRUE

See Also: Toric (VI-20.5 pg.346)

V1-20.7 Transposed

syntax

Transposed (M:MAT) :MAT

Description

This function returns the transpose of the matrix M.
example

M := Mat([[1,2,3],[4,5,611);
M;
Mat ([

[1, 2, 31,

[4, 5, 6]

Transposed (M) ;
Mat ([

[1, 41,

[2, 5],

[3, 6]

VI-20.8 Tuples

syntax

Tuples(S:LIST, N:INT):LIST

Description

This function computes all N-tuples with entries in S. It is equivalent to “S >< S >< ... >< 87 [N times].
example

Tuples([1, 4, 71, 2);
(ft, 11, 1, 41, [1, 71, [4, 11, (4, 41, (4, 71, [7, 11, [7, 41, [7, 71]

VI-20.9. Type 349

See Also: CartesianProduct, CartesianProductList (VI-3.2 pg.170), Permutations (VI-16.5 pg.306), Sub-
sets (VI-19.22 pg.340)

VI-20.9 Type

syntax

Type (E: 0BJECT) : TYPE

Description

This function returns the data type of E. The function “Types” (VI-20.11 pg.350) returns the list of CoCoA
data types.

example
Define CollectInts(L)

Result := [];
Foreach X In L Do
If Type(X) = INT Then Append(Result,X) EndIf
EndForeach;
Return Result
EndDefine;

CollectInts([1,"a",2,"b",3,"c"]);

(1, 2, 3]

Type(Type(INT)); -- Type returns a value of type TYPE

TYPE

Types();

[NULL, BOOL, STRING, TYPE, ERROR, RECORD, DEVICE, INT, RAT, ZMOD,
POLY, RATFUN, VECTOR, IDEAL, MODULE, MAT, LIST, RING, TAGGED(""),
FUNCTION]

See Also: Data Types (I11-2.6 pg.48), Types (VI-20.11 pg.350)

VI-20.10 TypeOfCoefts

syntax

Type0fCoeffs() : TYPE

Description

This function returns the type of the coefficients of the current ring.

example
Use R ::= Qlx,y,z];
Type0£fCoeffs();
RAT
Use S ::= Z/(2) [t];
Type0fCoeffs();
ZMOD

See Also: Characteristic (VI-3.7 pg.172), Coefficients (VI-3.15 pg.175), CurrentRing (VI-3.26 pg.180),
Indets (VI-9.15 pg.246)

350 Chapter VI-20. T

VI-20.11 Types

syntax
Types ()
Description
This function lists all CoCoA data types.
example

Types) ;
[NULL, BOOL, STRING, TYPE, ERROR, RECORD, DEVICE, INT, RAT, ZMOD,
POLY, RATFUN, VECTOR, IDEAL, MODULE, MAT, LIST, RING, TAGGED(""),
FUNCTION]

See Also: Data Types (I11-2.6 pg.48), Type (VI-20.9 pg.349)

Chapter VI-21

U

VI-21.1 UnivariateIndetIndex

syntax

UnivariateIndetIndex(F: POLY): INT

Description

This function returns 0 if the polynomial F is not univariate otherwise it returns the indeterminate index of F.

NB: If F is a constant, it returns 1.
example

Use Q[x,y];
UnivariateIndetIndex(3x"4-2x-1);

See Also: Indet (VI-9.11 pg.244), IndetInd (VI-9.12 pg.245), IndetIndex (VI-9.13 pg.245), IndetName
(VI-9.14 pg.245), Indets (VI-9.15 pg.246), NumlIndets (VI-14.24 pg.298)

VI-21.2 Unset

Set 0
Set 0 := B:BOOL
UnSet O

syntax

where 0 is a panel option.

Description

The command “Set” in its first form sets a panel option to TRUE. The command “UnSet” sets a panel option
to FALSE. The command “Set” in the second-listed form can be used to set an option to TRUE or FALSE.
A list of panels is returned by “Panels()”, and a list of panel options for a panel with name P is printed by
“Panel (P)”. The current status of an option is returned by “Option” (VI-15.7 pg.302).

example

Panel (GROEBNER) ;

351

352 Chapter VI-21. U

Sugar........... TRUE
FullRed......... : TRUE
SingleStepRed... : FALSE
Verbose......... : FALSE

Set Verbose;

UnSet Sugar;

Set FullRed := FALSE;
Panel (GROEBNER) ;

Sugar........... : FALSE
FullRed......... : FALSE
SingleStepRed... : FALSE
Verbose......... : TRUE

NOTE: there is also a function called “MakeSet” which takes a list obtained by removing duplicate elements.
The search key for that function in online help is “MakeSet” (VI-13.2 pg.273) and the search key for the present
command is “Unset”.

See Also: Introduction to Panels (V-1.1 pg.139), Panel (VI-16.2 pg.305), Option (VI-15.7 pg.302), Panels
(VI-16.3 pg.306)

VI-21.3 Untagged

syntax

Untagged (E: TAGGED_OBJECT) : UNTAGGED_OBJECT

Description

This function strips an object E of its tag, if any. “@E” is equivalent to “Untagged(E)”.
Tags are used for pretty printing of objects. See the reference listed below.

example
L := [1,2,3];
M := Tagged(L,"MyTag");
Type (L) ;
LIST
Type (M) ;
TAGGED ("MyTag")

Type (Untagged (M)) ;
LIST

See Also: Tagged Printing (I1I-7.6 pg.63), Tag (VI-20.1 pg.345), Tagged (VI-20.2 pg.345), Shortcuts
(VI-0.1 pg.155)

VI-21.4 Use

Use N

syntax

where N is either the identifier of an existing ring or a ring
itself.

VI-21.5. Using

Description

353

This command makes a ring active, i.e. makes a ring the current ring. The command “Use N ::= E;” where

b2

E is a ring, is a shorthand for “N ::= E; Use N;

If you want to change the ring inside a function you should call “Using” (VI-21.5 pg.353) instead.

example

Use S ::= Q[x,y,z];
RingEnv () ;

T ::=2/(3)[a,b];
Use T;
RingEnv () ;

Use Q[u]l; -- note that "Use" can be used w/out a ring identifier
RingEnv();

CurrentRingEnv
CurrentRing();

Q[ul

See Also: Accessing Other Rings (IV-8.11 pg.108), Using (VI-21.5 pg.353)

VI-21.5 Using

syntax

Using R Do C EndUsing

where R is the identifier for a ring and C is a sequence of commands.

Description

Suppose S is the current ring and R is another ring, then
Using R Do
C;
EndUsing;

is equivalent to

Use R;
C;
Use S;
example
Use S ::= Qlx,y]; -- the current ring is S
R ::= Q[a,b,c]; -- another ring
Using R Do Indets(); EndUsing;
[a, b, c]
Note: “Using Q[a,b] Do ... EndUsing;” will produce an error: you need to name the polynomial ring.

See Also: Accessing Other Rings (IV-8.11 pg.108), Use (VI-21.4 pg.352)

354 Chapter VI-21. U

Chapter VI-22

vV

VI-22.1 Var

Var X
Var (X)
Var (S:STRING)

syntax

where X is the identifier of a CoCoA variable.

Description

In the first and second form “Var” is used as a formal parameter to a user-defined function. It is used to pass a

variable—not its value—to the user-defined function. The following example should make the difference clear.

example

Define CallByRef(Var L) -- "call by reference": The variable referred
L := "new value"; -- to by L is changed.

EndDefine;

M := "old value";

CallByRef (M) ;

M;

new value

Define CallByVal(L) -- "call by value": The value of L is passed to
L := "new value"; -- the function.
Return L;

EndDefine;

L := "old value";

CallByVal(L);

new value

In the third form, Var(S), references the value of the variable or ring whose identifier is S:

example

]
[}

Var("a string")
Var("a string");

P := Record[Name = "test", Value = 1];
X := "Name";

355

356

P.Var(X);
test

Var ("myring") ::= Q[a,bl;

Var ("myring") ;
Qla,b]

Using Var("myring") Do (a+b)~2 EndUsing;
a2 + 2ab + b"2

Chapter VI-22. 'V

See Also: Define (VI-4.4 pg.182), RingEnv (VI-18.23 pg.326)

VI-22.2 Vector

Vector(F_1:POLY,...,F_n:POLY) :VECTOR
Vector (L:LIST) :VECTOR

syntax

where L is a list of polynomials.

Description

The first form returns the vector with components “F_1,...,F_n”; the second form returns the vector whose

components are the components of the list L.
example

Use R ::= Q[x];
V := Vector(1,x,x"2);
Type (V) ;
VECTOR
Vector ([1+x, x, x"21);
Vector(x + 1, x, x72)

Chapter VI-23

A%

VI-23.1 WeightsList

syntax

WeightsList () :LIST

Description

This function returns the first row of the weights matrix for the current ring as a list.
example

Use R ::= Q[t,x,y,2z];
WeightsList();
[13 1: 1: 1]

Use R ::= Q[t,x,y,z], Weights(1,3,5,2);
WeightsList();
[1, 3, 5, 2]

Use R ::= Qlx,yl, Weights(Mat([[1,2],[3,4],[5,611));
WeightsList();
(1, 2]

See Also: Deg (VI-4.5 pg.184), MDeg (VI-13.10 pg.278), Weights Modifier (IV-8.5 pg.105), WeightsMatrix
(VI-23.2 pg.357)

VI-23.2 WeightsMatrix

syntax

WeightsMatrix () :MAT

Description

This function returns the weights matrix for the current ring.

example
Use R ::= Q[x,y]l, Weights(Mat([[1,2],[3,4]1,[5,611));
WeightsMatrix() ;

Mat ([
1, 21,
[3, 4],
[5, 6]

357

358 Chapter VI-23. W

MDeg(y) ;
[2, 4, 6]

WeightsList(); -- the first row of the weights matrix
(1, 2]

See Also: Deg (VI-4.5 pg.184), MDeg (VI-13.10 pg.278), Weights Modifier (IV-8.5 pg.105), WeightsList
(VI-23.1 pg.357)

VI-23.3 While

While B Do C EndWhile

syntax

where B is a boolean expression and C is a sequence of commands.

Description

The command sequence C is repeated until B evaluates to FALSE.

example
N := 0;
While N <= 5 Do
PrintLn(2, """, N, " =", 2°N);
N := N+1;
EndWhile;
270 =1
271 = 2
272 = 4
2°3 =8
274 = 16
275 = 32

See Also: For (VI-6.12 pg.206), Foreach (VI-6.13 pg.207), Repeat (VI-18.14 pg.321)

VI-23.4 WithoutNth

WithoutNth(L:LIST,N:INT) :LIST

syntax

Description

This function returns the list obtained by removing the N-th component of the list L. The list L is not affected
(as opposed to the command “Remove” (VI-18.13 pg.321)).

example

L = [1’2:3,4:5]!
WithoutNth(L,3);
[1, 2, 4, 5]

See Also: Insert (VI-9.16 pg.246), Remove (VI-18.13 pg.321)

VI-23.5. WLog 359

VI-23.5 WlLog

syntax

WLog (F:POLY) :LIST of INT

Description

This function returns the weighted list of exponents of the leading term of F, as determined by the first row of
the weights matrix. Thus, if all the weights are 1, this function returns the same thing as “Log(F)”.
example

Use R ::= Q[x,y];
F := x"2-y;
WLog (F) ;

[2, 0]

See Also: Log (VI-12.12 pg.269)

360 Chapter VI-23. W

Chapter VI-24

X

VI-24.1 XelMat

XelMat (N: INTEGER) : MAT

syntax

Description

This function return the matrix defining a standard term-ordering.
example

XelMat (3);
Mat ([

[0, o, 11,

[o, 1, 01,

[1, 0, 0]

See Also: Ord (VI-15.8 pg.302), Orderings (IV-8.6 pg.106), DegRevLexMat (VI-4.7 pg.185), DegLexMat
(VI-4.6 pg.184), LexMat (VI-12.6 pg.266), RevLexMat (VI-18.21 pg.325)

361

362 Chapter VI-24. X

Chapter VI-25

Z

VI-25.1 ZPQ

syntax

ZPQ(F:POLY) : POLY
ZPQ(F:LIST of POLY):LIST of POLY

ZPQ(I:IDEAL) :IDEAL

Description
The function “ZPQ” maps a polynomial with finite field coefficients into one with rational (actually, integer)
coefficients. It is not uniquely defined mathematically, and currently for each coefficient the least non-negative
equivalent integer is chosen. Users should not rely on this choice, though any change will be documented.

See “QzP” (VI-17.3 pg.314) for more details.

example
Use R ::= Q[x,y,z];
F := 1/2%x"3 + 34/667*x*y*z - 890; -- a poly with rational coefficients
Use S ::= Z/(101) [x,y,2];
QZP(F); -- compute its image with coeffs in Z/(101)

-50x"3 - 19xyz + 19

Use R;
ZPQ(G) ;
51x"3 + 82xyz + 19

-- now map that result back to Q[x,y,z] it is NOT the same as F...

See Also: Accessing Other Rings (IV-8.11 pg.108), Bringln (VI-2.9 pg.167), Image (VI-9.9 pg.242), Ring

Mappings: the Image Function (IV-8.12 pg.109)

363

	I
	Preamble
	Version
	Preface
	System Distribution
	System Requirements
	Copyright and Trademarks
	Acknowledgments

	II Introduction to CoCoA
	The CoCoA System
	An Overview of the System
	System Structure
	Contributions
	CoCoA and Macaulay
	Pointers to the Literature

	Tutorial
	A Tutorial Introduction to CoCoA
	Setting Up CoCoA for the Tutorial
	Entering Commands
	Examples of Entering Commands
	More on Entering Commands
	After the Tutorial
	Arithmetic
	Variables
	The Variable ``It''
	Making Lists
	Setting Up a Ring
	A Groebner Basis Example
	Eliminating Variables
	Using More Than One Ring
	Substitutions
	First Functions
	More First Functions
	Rings Inside User-Defined Functions
	Rational Normal Curve
	Generic Minors
	Leading Term (Initial) Ideals, Generic Polynomials
	Ring Mapping Example
	Output to a File
	Finite Point Sets: Buchberger-Moeller
	Syzygies and Resolution Example
	Factoring Polynomials

	III The CoCoA Programming Language
	Introduction to CoCoA Programming
	An Overview of CoCoA Programming

	Language Elements
	Character Set and Special Symbols
	Identifiers
	Names of Indeterminates
	Reserved Names
	Comments
	Data Types
	Commands and Functions for Data Types

	Operators
	CoCoA Operators
	Algebraic Operators
	Relational Operators
	Boolean Operators
	Selection Operators
	Range Operator

	Evaluation and Assignment
	Evaluation
	Assignment

	User-Defined Functions
	Introduction to User-Defined Functions
	Commands and Functions for User-Defined Functions

	Flow Control: Conditional Statements and Loops
	Commands and Functions for Branching
	Commands and Functions for Loops

	Input/Output
	Introduction to IO
	Standard IO
	File IO
	String IO
	Commands and Functions for IO
	Tagged Printing
	Tagging an Object
	Printing a Tagged Object
	Describing a Tagged Object
	Another Example Using Tags
	Commands and Functions for Tags

	Memory Management
	Introduction to Memory
	Working Memory
	Global Memory
	Ring-Bound Memory
	Commands and Functions for Memory

	CoCoA Packages
	Introduction to Packages
	First Example of a Package
	Package Essentials
	Package Sourcing and Autoloading
	Global Aliases
	Local Aliases
	More Examples of Packages
	Package Initialization
	Sharing Your Package
	Commands and Functions for Packages
	Supported Packages
	K-Algebra Homomorphisms
	Galois Package
	Integer Programming
	Algebra of Invariants
	Primary Ideals
	Special Varieties
	Statistics
	Geometrical Theorem-Proving
	Typevectors
	Conductor
	Matrix Normal Form
	CantStop
	Control

	IV Doing Mathematics with CoCoA
	Booleans
	Introduction to Booleans
	Commands and Functions for Booleans

	Numbers
	Introduction to Numbers
	Rationals
	Numerators and Denominators for Rational Numbers
	Modular Integers
	Commands and Functions for Numbers

	Strings
	Introduction to Strings
	Concatenation
	Substrings
	Quotes Within Strings
	Commands and Functions for Strings

	Lists
	Introduction to Lists
	Commands and Functions for Lists

	Records
	Introduction to Records
	Commands and Functions for Records

	Vectors
	Introduction to Vectors
	Commands and Functions for Vectors

	Matrices
	Introduction to Matrices
	Commands and Functions for Matrices

	Rings
	Introduction to Rings
	New Rings
	Coefficient Rings
	Indeterminates
	Weights Modifier
	Orderings
	Predefined Term-Orderings
	Temporary Term-Orderings
	Custom Term-Orderings
	Module Orderings
	Accessing Other Rings
	Ring Mappings: the Image Function
	Quotient Rings
	Commands and Functions for Rings

	Polynomials
	Introduction to Polynomials
	Evaluation of Polynomials
	Commands and Functions for Polynomials

	Rational Functions
	Introduction to Rational Functions
	Numerators and Denominators for Rational Functions
	Commands and Functions for Rational Functions

	Ideals
	Introduction to Ideals
	Commands and Functions for Ideals

	Modules
	Introduction to Modules
	Quotient Modules
	Shifts
	Commands and Functions for Modules

	Groebner Bases and Related Computations
	Introduction to Groebner Bases in CoCoA
	Commands and Functions for Groebner-Type Computations
	The Interactive Groebner Framework
	Example: Interactive Groebner Basis Computation
	Example: Verbose Mode
	Example: Interactive Resolution Computation
	Example: Truncations
	Hilbert-Driven Computations

	CoCoAServer
	Introduction to CoCoAServer
	Functions using CoCoAServer

	V Working the System
	CoCoA Panels
	Introduction to Panels
	Setting Options
	Options in the GENERAL Panel
	Echo
	Timer
	Trace
	Indentation
	TraceSources
	SuppressWarnings
	ComputationStack
	Options in the GROEBNER Panel
	Sugar
	FullRed
	SingleStepRed
	Verbose
	Commands and Functions for Panels

	CoCoA's Help System
	Online Help
	Quick Tips for Using Online Help
	Commands and Functions for Online Help
	Other Help

	Fine Tuning At Start-up
	User Initialization

	CoCoA Interfaces
	CoCoA on a Macintosh
	CoCoA under Unix
	CoCoA under Windows/DOS

	VI Alphabetical List of Commands
	Special Characters
	Shortcuts

	A
	Abs
	Adjoint
	AffHilbert
	AffHilbertFn
	AffHilbertSeries
	AffPoincare
	Alias
	Alias In
	Aliases
	Append
	Ascii

	B
	BBasis5
	BettiDiagram
	BettiMatrix
	Bin
	BinExp
	Block
	BlockMatrix
	Break
	BringIn

	C
	Call
	CartesianProduct, CartesianProductList
	Cast
	Catch
	CFApprox
	CFApproximants
	Characteristic
	Ciao
	Clear
	ClearDenom
	Close
	CloseLog
	CocoaLimits
	CocoaPackagePath
	Coefficients
	CoeffOfTerm
	Colon
	ColumnVectors
	Comp
	Comps
	Concat
	ConcatLists
	Cond
	ContFrac
	Count
	CurrentRing

	D
	Dashes
	Date
	DecimalStr
	Define
	Deg
	DegLexMat
	DegRevLexMat
	Delete
	Den
	DensePoly
	Depth
	Der
	Describe
	Destroy
	Det
	DiagonalMat
	Diff
	Dim
	Discriminant
	Distrib
	Div
	DivAlg

	E
	E_
	Elim
	EqSet
	Equals
	EquiIsoDec
	Error
	Eval
	EvalBinExp
	EvalHilbertFn
	Ext

	F
	Fact
	Factor
	FactorMultiplicity
	FGLM5
	Fields
	First
	FirstNonZero
	FirstNonZeroPos
	Flatten
	FloatApprox
	FloatStr
	For
	Foreach
	Format
	Fraction
	Function
	Functions

	G
	GB.Complete
	GB.GetBettiMatrix
	GB.GetNthSyz
	GB.GetNthSyzShifts
	GB.GetRes
	GB.GetResLen
	GB.ResReport
	GB.Start_GBasis
	GB.Start_MinGens
	GB.Start_MinSyzMinGens
	GB.Start_Res
	GB.Start_Syz
	GB.Start_SyzMinGens
	GB.Stats
	GB.Step
	GB.Steps
	GBasis
	GBasis5, and more
	GBasisTimeout
	GBM
	GCD
	GCDFreeBasis
	GenericPoints
	GenRepr
	Gens
	Get
	GetEnv
	GetErrMesg
	Gin, Gin5
	GlobalMemory

	H
	H.Browse
	H.Commands
	H.Man
	H.OutCommands
	H.OutManual
	H.SetMore
	H.Syntax
	H.Tips
	H.Toc
	H.Tutorial
	H.UnSetMore
	HColon
	Head
	Help
	HGBM
	Hilbert
	HilbertBasis
	HilbertFn
	HilbertPoly
	HilbertSeries
	HilbertSeriesMultiDeg
	HilbertSeriesShifts
	HIntersection
	HIntersectionList
	Homogenized
	HSaturation
	HVector

	I
	Ideal
	IdealAndSeparatorsOfPoints
	IdealAndSeparatorsOfProjectivePoints
	IdealOfPoints
	IdealOfProjectivePoints
	Identity
	If
	ILogBase
	Image
	In
	Indet
	IndetInd
	IndetIndex
	IndetName
	Indets
	Insert
	Interpolate
	Interreduce, Interreduced
	Intersection
	IntersectionList
	Inverse
	IO.SprintTrunc
	Iroot
	IsAntiSymmetric
	IsDefined
	IsDiagonal
	IsEven, IsOdd
	IsHomog
	IsIn
	IsLexSegment
	IsNumber
	IsPositiveGrading
	IsPPrime
	IsPrime
	Isqrt
	IsServerReady
	IsStable
	IsStronglyStable
	IsSubset
	IsSymmetric
	IsTerm
	IsTermOrdering
	IsTree5
	IsZero

	J
	Jacobian

	K
	L
	Last
	Latex
	LC
	LCM
	Len
	LexMat
	LinearSimplify
	LinKer
	LinSol
	List
	LM
	Log
	LogToTerm
	LPos
	LPP
	LT

	M
	MakeCheck
	MakeSet
	Man
	MantissaAndExponent
	MapDown
	Mat
	MatConcatHor
	MatConcatVer
	Max, Min
	MDeg
	Memory
	MinGens
	Minimalize
	Minimalized
	Minors
	MinSyzMinGens
	Mod
	Mod2Rat
	Module
	Monic
	Monomials
	MonsInIdeal
	More
	Multiplicity

	N
	NewId
	NewList
	NewMat
	NewVector
	NextPPrime
	NextPrime
	NF
	NFsAreZero
	NonZero
	Not, And, Or
	NR
	Num
	NumComps
	Numerical.BBasisOfPoints5
	Numerical.BBasisOfPointsInIdeal5
	Numerical.FirstVanishingRelations5
	Numerical.FirstVanishingRelationsInIdeal5
	Numerical.GBasisOfPoints5
	Numerical.GBasisOfPointsInIdeal5
	Numerical.HBasisOfPoints5
	Numerical.HBasisOfPointsInIdeal5
	Numerical.QR5
	Numerical.SVD5
	NumIndets

	O
	OpenIFile
	OpenIString
	OpenLog
	OpenOFile
	OpenOString
	OpenSocket
	Option
	Ord

	P
	Packages
	Panel
	Panels
	Partitions
	Permutations
	Pfaffian
	PkgName
	Poincare
	PoincareMultiDeg
	PoincareShifts
	Poly
	PositiveGrading4
	PowerMod
	PreprocessPts5
	PrimaryDecomposition
	Print
	Print On
	PrintLn
	Product

	Q
	Quit
	QuotientBasis
	QZP

	R
	Radical
	RadicalOfUnmixed
	Rand
	Randomize
	Randomized
	Rank
	RealRootRefine
	RealRoots
	Record
	ReducedGBasis
	RefineGCDFreeBasis
	RegularityIndex
	Remove
	Repeat
	Res
	Reset
	ResetPanels
	Resultant
	Return
	Reverse, Reversed
	RevLexMat
	Ring
	RingEnv
	RingEnvs
	RingEnvSet
	RMap
	RootBound

	S
	Saturation
	ScalarProduct
	Seed
	SeparatorsOfPoints
	SeparatorsOfProjectivePoints
	Set-Unset
	Shape
	Sign
	Size
	Skip
	SmoothFactor
	Sort
	SortBy
	Sorted
	SortedBy
	Source
	Spaces
	Sprint
	StarPrint
	Starting
	Submat
	Subsets
	Subst
	Sum
	Support
	Sylvester
	Syz
	SyzMinGens
	SyzOfGens

	T
	Tag
	Tagged
	Tail
	TensorMat
	Toric
	Toric.CheckInput
	Transposed
	Tuples
	Type
	TypeOfCoeffs
	Types

	U
	UnivariateIndetIndex
	Unset
	Untagged
	Use
	Using

	V
	Var
	Vector

	W
	WeightsList
	WeightsMatrix
	While
	WithoutNth
	WLog

	X
	XelMat

	Z
	ZPQ

