up previous next
4.8.7 Predefined Term-Orderings
The predefined term-orderings are:

* degree reverse lexicographic: DegRevLex (the default ordering)

* degree lexicographic: DegLex

* pure lexicographic: Lex

* pure xel: Xel

* elimination term-ordering: Elim(X:INDETS)

The first two term-orderings use the weights of the indeterminates for computing the degree of a monomial. If the indeterminates are given in the order x_1, ...,x_n, then x_1 > ... > x_n with respect to Lex, but x_1 < ... < x_n with respect to Xel.

In the last ordering, X specifies the variables that are to be eliminated. It may be a single indeterminate or a range of indeterminates. However, X may not be an arbitrary list of indeterminates; for that, see the command Elim (as opposed to the modifier Elim being discussed here). A range of indeterminates can be specified using the syntax < first-indet >..< last-indet >. Another shortcut: if there are indexed variables of the form, say, x[i,j], then Elim(x) specifies a term-ordering for eliminating all of the x[i,j].

Example
  Use R ::= QQ[x,y,z], Lex;
  x+y+z;
x + y + z
-------------------------------
  Use R ::= QQ[x,y,z], Xel;
  x+y+z;
z + y + x
-------------------------------
  Use R ::= QQ[t,x,y,z], Elim(t);
  I := Ideal(t-x,t-y^2,t^2-xz^3);
  GBasis(I);
[t - x, -y^2 + x, xz^3 - x^2]
-------------------------------
  Use R ::= QQ[x[1..5],y,z], Elim(x); -- term-ordering for eliminating all
                                      -- of the x[i,j]'s
  Ord();
Mat([
  [1, 1, 1, 1, 1, 0, 0],
  [0, 0, 0, 0, 0, 1, 1],
  [0, 0, 0, 0, 0, 0, -1],
  [0, 0, 0, 0, -1, 0, 0],
  [0, 0, 0, -1, 0, 0, 0],
  [0, 0, -1, 0, 0, 0, 0],
  [0, -1, 0, 0, 0, 0, 0]
])
-------------------------------