up previous next
NR(X: RINGELEM, L: LIST of RINGELEM): RINGELEM
NR(X: MODULEELEM, L: LIST of MODULEELEM): MODULEELEM |
This function returns the normal remainder of
X
with respect to
L
,
i.e., it returns the remainder from the division algorithm. To get
both the quotients and the remainder, use
DivAlg
.
Note that this function does not compute a Groebner basis. If the
list
L
does not form a Groebner basis then the remainder may
not be zero even if
X
is in the ideal or module generated by
L
(use
NF
instead, or possibly
GenRepr
).
/**/ use R ::= QQ[x,y,z];
/**/ F := x^2*y +x*y^2 +y^2;
/**/ NR(F, [x*y-1, y^2-1]);
x +y +1
// NOT YET IMPLEMENTED for MODULEELEM
|