up previous next
der

the derivative of a rational function

Syntax
der(F:POLY, X:INDET):POLY

where F is a polynomial or a rational function.

Description
This function returns the derivative of F with respect to the indeterminate X.

Example
/**/  Use R ::= QQ[x,y];
/**/  Der(x*y^2, x);
y^2

  Define Jac(F)  --> The Jacobian matrix for a polynomial.
    Return Mat([[Der(F, X) | X In Indets(RingOf(F))]]);
  EndDefine;
  Jac(x*y^2);
matrix([
  [y^2, 2*x*y]
])
-------------------------------
  Der(x/(x+y), x);  // not yet implemented
y/(x^2 + 2xy + y^2)
-------------------------------

See Also