up previous next
NR

normal reduction

Syntax
NR(X:POLY, L:LIST of POLY):POLY
NR(X:VECTOR, L:LIST of VECTOR):VECTOR

Description
This function returns the normal remainder of X with respect to L, i.e., it returns the remainder from the division algorithm. To get both the quotients and the remainder, use DivAlg . Note that if the list does not form a Groebner basis, the remainder may not be zero even if X is in the ideal or module generated by L (use GenRepr or NF instead).

Example
/**/  Use R ::= QQ[x,y,z];
/**/  F := x^2*y +x*y^2 +y^2;
/**/  NR(F, [x*y-1, y^2-1]);
x +y +1

/**/  V := Vector(x^2 +y^2 +z^2, x*y*z);  --***OBSOLETE MANUAL: WORK IN PROGRESS***
/**/  NR(V,[Vector(x,y), Vector(y,z), Vector(z,x)]);
Vector(z^2, z^3 - y*z - z^2)

See Also