up previous next
SubalgebraMap

algebra homomorphism representing a subalgebra

Syntax
IsInSubalgebra(F:POLY, L:LIST)
IsInSubalgebra(F:POLY, TAGGED("$alghom.Map"))

Description
***** NOT YET IMPLEMENTED *****

This function returns the homomorphism representing a subalgebra.

Example
  Use QQ[s,t];
  SAM := SubalgebraMap([s^3, s^2t, st^2, t^3]);
  Ker(SAM);
SubalgebraRing :: Ideal(x[3]^2 - x[2]x[4], x[2]x[3] - x[1]x[4], x[2]^2 - x[1]x[3])
-------------------------------
  IsInSubalgebra(s^3, SAM);
True
-------------------------------
  SubalgebraRepr(s^3, SAM);
SubalgebraRing :: x[1]
-------------------------------
  IsInSubalgebra(s^5, [s^3, s^2t, st^2, t^3]);
False
-------------------------------
  SubalgebraRepr(s^5, SAM);
NULL
-------------------------------

See Also