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1. Introductory Remarks

This is an extended set of lecture notes for the course given by the author at the CoCoA

school in Sardegna in May, 2005. These notes are not intended to be exhaustive. Instead,

the goal is to present the student with an overview of certain areas of algebraic geometry

and commutative algebra which are extremely active, and to start seeing how almost

all of the constructions and theory can be carried out on the computer algebra program

CoCoA. For this reason, a fundamental part of this course is the series of tutorials run by

Martin Kreuzer. These notes contain some exercises that may supplement those tutorials

or simply give the student a way of testing his or her understanding of the material. Of

course it is necessary to look up the topics in the literature in order to get a more detailed

treatment of this material. What we have here is only a rough overview. It is hoped that

it is enough for the student to whet his or her appetite, and that there are enough details

here for the student to at least begin running some experiments on the computer and to

write CoCoA programs on these subjects.

The three best references for this course (including the tutorials) are

• Kreuzer-Robbiano, Computational Commutative Algebra, I & II

• Migliore, Introduction to Liaison Theorey and Deficiency Modules

• Schenck, Computational Algebraic Geometry

See the references at the end for the details.

Goal of course: To start understanding how one uses computer algebra programs (in

our case, CoCoA) as a tool for research. In a sense, Commutative Algebra and Algebraic

Geometry are becoming experimental sciences!!

• What kinds of problems lend themselves to being helped by experiments? (Nearly

all...)
1
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• What kinds of experiments do you try to perform for a given problem? Sometimes

the hardest part is figuring out how to run an experiment that will shed light on

the problem.

• How do you go about carrying out these experiments?

Structure of Course: My lectures will be more on the first two questions. The

material from the lectures will be used in the tutorials to get a hands-on feeling for how

to start working on your own. We’ll go quickly over a lot of material, with few proofs.

We want to get started quickly on the computer!

The material for much of the course will be loosely centered on questions around the

topic of Gorenstein algebras. Unfortunately we have a broad range of backgrounds here,

so for many there will be some review, more for some, less for others. Much of it will be

overview with references.

Truth in Advertising Statement: I am not at all an expert in using CoCoA. I

learned how to work in Macaulay (Classic), and am only now starting to learn CoCoA.

But I and my co-authors (notably Chris Peterson) have used computer experiments in

probably all of the last 30 papers or so that I have written, and many of them would not

have been written without the computer-aided experiments.

However, Martin Kreuzer will be running the tutorials, and he is one of the world

experts in using computer algebra programs in general, and CoCoA in particular.

How does a computer help in research?

• Playing around, you notice patterns and try to explain them or make conjec-

tures. For instance, the theory of Buchsbaum-Rim sheaves (e.g. [60]) arose in this

way, thanks to Chris Peterson’s experiments. This will be described briefly below.

• Test conjectures/ideas. It often requires a lot of theoretical work to figure out

the right example to run.

• Produce interesting examples of theorems that you have proven, by careful

choice. An example is in the paper, [38], of Huneke and Ulrich.

• Produce exhaustive searches that you can analyze and look to see if a state-

ment is true or not, or look for patterns. Examples are searches done by Yong-Su

Shin in [23] and by Chris Francisco in [18].

As you probably know already, or will certainly find out very soon (!), most of the

basic constructions already exist as easy procedures in CoCoA (e.g. saturation, Hilbert

function, minimal free resolutions). The art is to see how much farther you can go by

writing programs to do what you want to study.
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2. Hilbert functions

Definition 2.1. Let K be a field and let P = K[x0, . . . , xn] be the homogeneous poly-

nomial ring. Let m be the homogeneous maximal ideal, m = (x0, . . . , xn). Let I be a

homogeneous ideal. The saturation, Ī, of I is

Ī = {f ∈ P | mt · f ⊂ I for some t > 0}.

A homogeneous ideal I ⊂ P is saturated if I = Ī.

Remark 2.2. Saturated ideals are what define subschemes of projective space. We will

usually start with saturated ideals, but many non-saturated ideals will be of interest to

us. If you are not comfortable with the notion of a scheme, just think “saturated ideal”

wherever you see the word “scheme.” There are infinitely many homogeneous ideals that

define the same scheme in Pn, and they all have the property that they have the same

saturation, and any two (including the saturation) agree in all sufficiently large degrees.

Definition 2.3. Given a finitely generated graded module M , the Hilbert function of M

is the function

HFM : Z → Z

defined by t 7→ dimK(Mt).

For us the most important special case is when M = P/I for some homogeneous ideal

I, often saturated. Since both P and I are graded, we have

HFP/I(t) = dimK Pt − dimK It.

Theorem 2.4 (Hilbert). Given a finitely generated graded module M with Hilbert func-

tion HFM(t), there is a unique polynomial, HPM(t) with rational coefficients such that

HPM(t) = HFM(t) for all t � 0. We have deg HP(t) = dim Z(AnnM), where Z denotes

the zero set in Pn of a homogeneous ideal.

(See Hartshorne [30] Theorem I.7.5 for the proof.)

Remark 2.5. When M = R/I for a saturated ideal I defining a scheme V , then the

coefficients of HP have geometric significance. In this case we often write HPV (t) for

HPP/I(t).

For example, when V is a curve, we have

HPV (t) = (deg V )t− pa(V ) + 1,

where pa(V ) denotes the arithmetic genus.
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Example 2.6. (1) If M = P = K[x0, x1, . . . , xn], we know that

HFP (t) = dim Pt =

(
t + n

t

)
.

(2) If V is a zero-dimensional scheme of degree d then HPV (t) = d for all t � 0.

(3) If V is a smooth rational curve of degree d then HPV = dt+1 (regardless of which

projective space V lives in).

(4) If V is a smooth rational curve of degree 6 in P3 lying on a quadric surface then

one can check that

HFV (t) =


1, if t = 0;
4, if t = 1;
9, if t = 2;
16, if t = 3;
6t + 1, if t ≥ 4;

(5) If V is a smooth rational curve of degree 6 in P3 not lying on a quadric surface

but lying on a unique cubic (this is not the only possibility, but it’s the only one

we’ll discuss) then

HFV (t) =


1, if t = 0;
4, if t = 1;
10, if t = 2;
6t + 1, if t ≥ 3;

Exercise 1. (but I don’t know the full answer): If V is a smooth rational curve in P3

not lying on a quadric, how many independent cubics can it lie on? I.e. what are the

possibilities for dim(IV )3?

Example 2.7. If P = K[x0, x1, x2] and I = (x2
0, x

3
1, x

6
2) then what can we say about

the Hilbert function? Let m = (x0, x1, x2). Of course from now on we will never do

such a thing by hand, but let’s see what’s involved. And let’s be happy that the ideal is

(x2
0, x

3
1, x

6
2) and not

(330206918x2 + 2283577463xy + 2129104241y2 − 2703411994xz + 2216678917yz−
1581465340z2,

−478900145x3 + 3323470647x2y − 612426241xy2 + 3469926795y3 − 2210565765x2z−
1834910978xyz + 3396757959y2z + 1258111242xz2 + 2398521289yz2 − 1117801112z3,

−3955911391x6 − 2025890740x5y + 3202146114x4y2 + 3900633001x3y3−
2371292351x2y4 − 2057716532xy5 − 578365832y6 + 1144565127x5z + 1439020939x4yz+
2060537173x3y2z − 3819178076x2y3z + 710288713xy4z − 4037409953y5z−
2976048620x4z2 − 2722226791x3yz2 + 3636460765x2y2z2 − 3099411540xy3z2+
97696535y4z2 − 234975492x3z3 + 1650277019x2yz3 + 2990538955xy2z3 − 2900041698y3z3+
3145426837x2z4 + 4123904461xyz4 − 4091701992y2z4 + 3700309012xz5 − 3670841466yz5+
721152313z6)
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If nothing else, such an exercise makes one really appreciate the computer!

• Since x0x
2
1x

5
2 /∈ I, we know that (P/I)8 6= 0. Once can check that this is a basis

for (P/I)8. On the other hand, one can check that (P/I)9 = 0. So we have

HFP/I(8) = 1, HFP/I(9) = 0.

This tells us when we are finished. In general such things are done by considering

regularity.

• Let’s start from the other side. Clearly

HFP/I(0) = 1, HFP/I(1) = 3.

• Since there is exactly one generator of I of degree 2, we also easily get

HFP/I(2) = 6− 1 = 5.

• Since

(x2
0 ·m, x3

1) = (x3
0, x

2
0x1, x

2
0x2, x

3
1)

and these generators form a basis for I3, we see that

dim I3 = (1) ·
(

3

2

)
+ (1) ·

(
2

2

)
, so HFP/I(3) = 10− 4 = 6.

• Similarly,

(x2
0 ·m2, x3

1 ·m) = (x4
0, x

3
0x1, x

3
0x2, x

2
0x

2
1, x

2
0x1x2, x

2
0x

2
2, x0x

3
1, x

4
1, x

3
1x2),

so we have

dim I4 =

(
4

2

)
+

(
3

2

)
= 9, so HFP/I(4) = 15− 9 = 6.

• In degree 5 something new happens. We try to compute as above, and get a first

estimate

dim I5 =

(
5

2

)
+

(
4

2

)
;

but this counts the monomial x2
0x

3
1 twice! So in fact we have

dim I5 =

(
5

2

)
+

(
4

2

)
− 1 = 15, so HFP/I(5) = 21− 15 = 6.

• We keep going in this way, but eventually we find we are subtracting too much

and have to add some of it back. The final answer is that the Hilbert function of

P/I is given by the vector

(1, 3, 5, 6, 6, 6, 5, 3, 1)

(and all other values are 0).

Exercise 2. Check the details of Example 2.7.
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An important question is to characterize those functions which are Hilbert functions of

some standard graded algebra (i.e. are of the form P/I for some I). This was answered

by Macaulay, and will be the focus of one of our tutorials.

A very interesting subject in this regard is what happens when Macaulay’s bound is

achieved, i.e. when there is maximal growth of the Hilbert function. This has been studied

by Gotzmann [28]. A cute study of the geometric consequences of these results can be

found in [5].

3. Minimal Free Resolutions

All this adding and subtracting of the dimensions (and more!) in the last example is

kept track of by free resolutions.

Definition 3.1. Let M be a finitely generated graded P -module. A free resolution of M

is a long exact sequence

0 → Fk → Fk−1 → · · · → F2 → F1 → F0 → M → 0

where the Fi are finitely generated free modules and the maps are homogeneous of degree

0. (This means it preserves the degrees of domain and target, not that the entries of the

matrices are constants!) This is the minimal free resolution if all the entries of all the

matrices are either zero or forms of degree ≥ 1. If this resolution is minimal, we say that

the projective dimension of M is k. We write pd(M) = k.

If Fi =
⊕

j∈Z P (−aij), then we say that the aij are the graded Betti numbers of M . F0

keeps track of the minimal generators of M , F1 keeps track of the minimal first syzygies,

etc. But when M = P/I, it turns out that F0 = P and F1 keeps track of the minimal

generators of I, etc. because you can split the long exact sequence:

0 → Fk → . . . → F2 → F1 −→ P → P/I → 0.
↘ ↗

I
↗ ↘

0 0

Example 3.2. You can check that the minimal free resolution of I = (x2
0, x

3
1, x

6
2) is

0 → P (−11)
φ3−→ P (−5)⊕P (−8)⊕P (−9)

φ2−→ P (−2)⊕P (−3)⊕P (−6)
φ1−→ P → P/I → 0,

where

φ1 =
[

x2
0 x3

1 x6
2

]
, φ2 =

 x3
1 x6

2 0
−x2

0 0 x6
2

0 −x2
0 −x3

1

 , φ3 =

 x6
2

−x3
1

x2
0


The exactness in each degree makes it easy to compute the Hilbert function and keep

track of all the adding and subtracting we talked about.
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In general knowing the graded Betti numbers gives you the Hilbert function for free,

but not conversely – the graded Betti numbers contain more information.

Example 3.3. A set, Z1, of four general points in P2

• •
• •

has Hilbert function (1, 3, 4, 4, 4 . . . ), but so does a set, Z2, of four points with three on a

line:
•

• • •
But we can distinguish between these via the minimal free resolution, which picks up

the fact that the first is a complete intersection (see below) and the second is not. The

minimal free resolutions (ignoring the maps) are, respectively,

0 → P (−4) → P (−2)2 → IZ1 → 0,

and

0 →
P (−4)
⊕

P (−3)
→

P (−2)2

⊕
P (−3)

→ IZ2 → 0.

Note that what distinguishes them is a “ghost term” P (−3), also called a “redundant

term.” Notice that such summands do not contribute to the computation of the Hilbert

function.

Ghost terms (or more precisely, their absence) have appeared in several very interesting

conjectures. We will discuss these in greater detail below, but we mention them now. First

we have the Minimal Resolution Conjecture:

Conjecture 3.4 (Lorenzini, [47]). The ideal of a general set of points in Pn has a minimal

free resolution with no ghost terms.

This conjecture was disproven by Eisenbud and Popescu [17] a few years ago. However,

special cases have either been proven (e.g. the Cohen-Macaulay type conjecture for the

end of the resolution, proven by Lauze [45]) or remain open (e.g. the Ideal Generation

conjecture for the beginning of the resolution).

Another conjecture that has appeared is for an ideal of generally chosen forms of arbi-

trary degree. Note first that sometimes Koszul relations force ghost terms. For instance,

even for generally chosen forms of degrees 4,4,8 in three variables (say), there is forced

to be a generator of degree 8 and a Koszul first syzygy of degree 8 coming from the two

generators of degree 4. If you add generators of degrees that are not too small or too

large, this problem remains. So we have the Thin Resolution Conjecture:

Conjecture 3.5 (Iarrobino, [39]). An ideal of generally chosen forms has a minimal free

resolution with no ghost terms apart from those forced by Koszul syzygies.
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This was also disproven [54]. See also [55], [56]. However, again special cases remain,

and in both cases it is probably true that “most of the time” the conjecture is true, and

it remains to make clear what “most of the time” means. In the tutorials we will also

discuss one of the special cases that is open, which is an Artinian version of the Minimal

Resolution Conjecture. This is connected to the Fröberg Conjecture, which we will discuss

below.

For now, we address the question of existence of minimal free resolutions.

Theorem 3.6 (Hilbert Syzygy Theorem). If M is a finitely generated graded P -module

then M has a (finite) minimal free resolution, and it must hold that k ≤ n + 1.

In fact we have something stronger:

Theorem 3.7 (Auslander-Buchsbaum). pdM + depth M = depth P = n + 1.

Exercise 3. Verify that in Example 3.2, the Auslander-Buchsbaum theorem gives

3 + 0 = 3.

Definition 3.8. The quotient ring P/I is Cohen-Macaulay if

depth P/I = dim P/I,

where dim refers to the Krull dimension. A subscheme V of Pn is arithmetically Cohen-

Macaulay (ACM) if P/IV is a Cohen-Macaulay ring.

Corollary 3.9. If P/I is Cohen-Macaulay of Krull dimension r +1 then pdP/I = n− r.

In particular, if V ⊂ Pn is arithmetically Cohen-Macaulay then pdP/IV = codim V .

Otherwise pdP/IV > codim V .

Definition 3.10. If P/I is Cohen-Macaulay of Krull dimension r + 1 then the Cohen-

Macaulay type of P/I is the rank of the last free module, Fn−r.

A special case is when the number of minimal generators of IV is equal to the codi-

mension of V (i.e. height of IV ). Then V is called a complete intersection. Our more

algebraically inclined friends call IV a regular sequence. Many invariants of V depend only

on the degrees of the generators of IV , called the type of the complete intersection. (This

should not be confused with the Cohen-Macaulay type.) For example, the two ideals at

the beginning of Example 2.7 are complete intersections of the same type.

Some special properties of complete intersections are

• the degree is equal to the product of the degrees of the generators;
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• If P/I is finite dimensional as a K-vector space (i.e. if it is Artinian) then

the Hilbert function of P/I is symmetric (looking only at the non-zero entries).

We saw this above in the case of (x2
0, x

3
1, x

6
2), where the Hilbert function was

(1, 3, 5, 6, 6, 6, 5, 3, 1). In the case of the four points, where the Hilbert function

was (1, 3, 4, 4, 4, . . . ), it is not symmetric, but notice that the first difference is

(1, 2, 1), which is symmetric. This will become clearer in the next section.

• The minimal free resolution is well-known, and is called the Koszul resolution.

An example was given above in the case of (x2
0, x

3
1, x

6
2). It always turns out (for

complete intersections) that the last free module in the Koszul resolution is P (−k),

where k is the sum of the degrees of the minimal generators. It also turns out that

the resolution is self-dual (up to twist). We will generalize this shortly.

In many situations (as we will see), we are more interested in the ranks and twists of

the modules Fi (i.e. in the graded Betti numbers) than in the maps φi. This information is

kept track of in the Betti diagram: if Fi =
⊕

j∈Z P (−aij) then we record this information

with the following diagram (where we assume that the generators are all of non-negative

degree):

b0 b1 b2 . . .
0 a0,0 a1,1 a2,2 . . .
1 a0,1 a1,2 a2,3 . . .
2 a0,2 a1,3 a2,4 . . .
3 a0,3 a1,4 a2,5 . . .
...

...
...

...

where ai,j gives the number of copies of P (−j) in Fi, and bi is the rank of Fi, and is equal

to
∑

j ai,j. By convention, we often write a dash “-” in place of a 0.

Example 3.11. If I = (x2
0, x

3
1, x

6
2) then the Betti diagram for P/I is

1 3 3 1
0 1 - - -
1 - 1 - -
2 - 1 - -
3 - - 1 -
4 - - - -
5 - 1 - -
6 - - 1 -
7 - - 1 -
8 - - - 1
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4. Hyperplane sections

An important tool (this is a huge understatement) in algebraic geometry and commu-

tative algebra is that of taking hyperplane sections. Geometrically, we intersect V with a

general hyperplane (“general” can mean different things, depending on the situation) to

obtain V ∩H. We sometimes call this the geometric hyperplane section.

Definition 4.1. Let I ⊂ be a saturated ideal defining a closed subscheme V ⊂ Pn. Let L

be a linear form such that L is not a zero-divisor on P/I. Then the algebraic hyperplane

section is the ideal

J :=
I + (L)

(L)
⊂ R := P/(L).

The saturation of J is the ideal IV ∩H of the geometric hyperplane section.

Note that J may or may not be saturated. Its saturation depends on some cohomolog-

ical conditions, namely the vanishing of⊕
t∈Z

H1(Pn, IV (t)).

This module is often called the deficiency module, and in the case of curves it is also

called the Hartshorne-Rao module. It is not hard to check that V is ACM if and only if

H i(Pn, IV (t)) = 0 for all t and all 1 ≤ i ≤ dim V . In the case of curves, we only have to

worry about i = 1.

Example 4.2. Let V1 be the union of two lines in P3 meeting in a point. Then V1 is a

plane curve of degree 2, and it is a complete intersection of type (1, 2). The geometric

hyperplane section consists of two points, which form a complete intersection of type

(1, 2) in the plane defined by L (i.e. in the ring P/(L)). It is not hard to check that J1 is

saturated.

Let V2 be the union of two disjoint lines in P3. Then V2 does not lie in any plane, i.e.

IV2 does not contain any linear forms. So J2 does not contain any linear form (as an ideal

in P/(L)). But V2 ∩H is again a set of two points, which does lie on a line. So J2 is not

saturated.

The difference between V1 and V2 is that V1 is ACM while V2 is not.

Proposition 4.3. Let I be a homogeous ideal such that P/I is Cohen-Macaulay of Krull

dimension r ≥ 1. Then the following hold:

(1) I is saturated.

(2) Let J be the algebraic hyperplane section, J = I+(L)
(L)

⊂ P/(L) = R, as above. Then

R/J is again Cohen-Macaulay, now of Krull dimension r − 1.

(3) The ideal J has the same Betti diagram in the ring R as I does in P .

(4) The Hilbert function of R/J is the first difference of that of P/I.
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(5) In particular, the degree is preserved. This is true even without the Cohen-Macaulay

assumption when r ≥ 2, but it’s also true for r = 1 in the Cohen-Macaulay case.

(If R/J is Artinian then by “degree” we just mean the vector space dimension of

R/J .)

(6) If the Krull dimension of P/I is ≥ 2 then J is saturated, as an ideal in R. Of

course if R/J is Artinian then J is not saturated.

Remark 4.4. (a) If P/I is Artinian then depth P/I = dim P/I = 0 (where “dim”

refers to the Krull dimension), so P/I is automatically Cohen-Macaulay.

(b) If P/I is the coordinate ring of a zero-dimensional scheme (i.e. the Krull dimension

of P/I is 1 and I is saturated, so depth P/I ≥ 1) then in fact depth P/I = 1 and

P/I is again automatically Cohen-Macaulay.

Exercise 4. If R/J is Artinian then what is the saturation of J?

Definition 4.5. If P/I is Cohen-Macaulay of Krull dimension r then the Artinian reduc-

tion of P/I is the ring obtained by performing the process of taking algebraic hyperplane

sections a total of r times. This can be accomplished in one step by replacing L by

(L1, . . . , Lr). The Artinian reduction is a Cohen-Macaulay ring of Krull dimension 0, and

R/J is finite-dimensional as a K-vector space. The Hilbert function of R/J is called the

h-vector of P/I.

A very interesting question is to determine the extent to which the converse of (2) is

true in Proposition 4.3. To begin, we have the following (see for instance [38] or [51]).

Proposition 4.6. Let V ⊂ Pn be a subscheme of dimension r ≥ 2 (as a subscheme of

Pn). If the general geometric hyperplane section is ACM then V is ACM.

Of course if V is a curve then its geometric hyperplane section is a zero-dimensional

scheme, which is ACM. But we have seen that not all curves are ACM. A good deal of work

has centered on the question of finding conditions on the general geometric hyperplane

section that guarantee that V is in fact ACM. There are too many papers to cite; the

most recent is the paper [27] of Gorla, and we refer to that paper for the other references.

More generally, there is the whole “lifting” problem:

• What Artinian rings are the Artinian reduction of the coordinate ring of a reduced

set of points? This is completely open. In the tutorial we will discuss one answer,

namely distractions, or liftings of Artinian monomial ideals. A distraction of an

Artinian monomial ideal gives the homogeneous saturated ideal of a finite, reduced

set of points whose Artinian reduction is the original monomial ideal. The idea

goes back at least to Hartshorne [31], and was extended in [57].
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• What finite Hilbert functions are the Hilbert function of the Artinian reduction of

a reduced set of points? (This was answered by Geramita-Maroscia-Roberts [24].)

The answer is that the only condition is Macaulay’s growth condition!!! This is

shown via distractions.

• What finite Hilbert functions are the Hilbert function of the Artinian reduction of

a reduced set of points with given properties? This has been studied in the case

of Gorenstein and level rings, and points with the Uniform Position Property (see

below on page 12), but is largely open.

5. Codimension Two ACM schemes

If V is an ACM subscheme of Pn codimension two, we know that the minimal free

resolution of R/IV has the form

0 → F2
A−→ F1 → R → R/IV → 0.

The matrix A is called the Hilbert-Burch matrix of V (or of IV ). Because the alternating

sum of the ranks is zero, we see that A has to be a (t + 1)× t homogeneous matrix.

Theorem 5.1 (Hilbert-Burch). IV is minimally generated by the maximal minors of A.

Conversely, if A is a homogeneous matrix whose ideal, I, of maximal minors define a

scheme of codimension two, then I is saturated, and in fact P/I is Cohen-Macaulay, and

after a change of basis, A appears as the matrix in the minimal free resolution.

If it seems like practically every theorem in these notes has Hilbert’s name on it, you’re

not too far off!

Without going into too much detail, just about every theorem about codimension two

ACM schemes is centered around this theorem. For instance, when we talk about liaison,

the fact that we know so much about the liaison properties of ACM schemes of codimension

two is due to this theorem.

An interesting problem is to describe the possible Hilbert functions of codimension two

ACM subschemes, and without loss of generality we might as well describe the possible

Hilbert functions of points in P2. This will be treated in one of the tutorials, as a special

case. (In fact, we will discuss what happens for points in any projective space.)

Exercise 5. Why is this “without loss of generality?”

What is not treated in the tutorials is the fact that much more is known for points in

P2. In particular, the following have been studied:

• What are the possible Hilbert functions for sets of points in P2 with the Uniform

Position Property (UPP)? A set of points is said to have the Uniform Position
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Property if all subsets of the same cardinality have the same Hilbert function. For

instance, in Example 3.3, the first set of points has UPP while the second set does

not. The necessary and sufficient condition is that the Hilbert function has to be

of decreasing type. This is a property of the h-vector, and it says that after the h-

vector reaches its maximum and starts decreasing, it has to be strictly decreasing

until it reaches zero. One place to read about this is [25], which describes the

history of the problem and the different ways in which the problem has been

answered in the literature.

• It was noted above that the possible Hilbert functions of reduced sets of points in

Pn are known (via their Artinian reductions). What happens if the growth from

any particular degree to the next is maximal? This is actually more interesting

at the Artinian level. In P2 this is completely understood, and it is due to Davis

[13]. Some results in the same direction for higher projective space can be found

in [5]. Davis’ result says, basically, that if the Artinian reduction, A, has maximal

growth of the Hilbert function from degree d to d + 1, say, then the component in

degree d + 1 has a GCD of degree equal to HFA(d). In this context, it turns out

that “maximal growth” means that HFA(d) = HFA(d+1). In the case of reduced

points, Davis also gives geometric consequences about how many points must lie

on the curve defined by the GCD.

6. Gorenstein rings

In this section we will discuss a natural extension of the notion of a complete intersec-

tion, which has been extremely important in the literature.

Definition 6.1. If I is an ideal such that P/I is Cohen-Macaulay and the minimal free

resolution of P/I ends with a free module Fk of rank 1 (i.e. if P/I has Cohen-Macaulay

type 1) then P/I is a Gorenstein ring. If V ⊂ Pn is a subscheme such that P/IV is

Gorenstein, we say that V is arithmetically Gorenstein.

Remark 6.2. While we will not discuss this too much, it is worth noting that a general-

ization of this is the notion of a level ring, which is simply defined by the property that

the last free module Fr does not necessarily have rank one, but all summands of Fr have

the same twist. An example is a rational normal curve.

Proposition 6.3. If P/I is Gorenstein of Krull dimension r + 1 then

(1) The minimal free resolution of P/I is self-dual up to twist;

(2) The Hilbert function of the Artinian reduction of P/I is symmetric;

(3) The canonical module Extn−r
R (P/I,R) is isomorphic to a twist of P/I.
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The following useful result is from [14]. It was generalized to the non-reduced case by

Kreuzer [41]. (Ask him about it if you are interested!)

Theorem 6.4 (Davis-Geramita-Orecchia). Let Z be a reduced zero-dimensional scheme

of degree d. Then Z is arithmetically Gorenstein if and only if the Artinian reduction of

R/IZ has symmetric Hilbert function and Z has the Cayley-Bacharach property (i.e. all

subsets of d− 1 points have the same Hilbert function).

Example 6.5. (1) The first example of a Gorenstein ring is any complete intersection.

(2) Any n + 2 points in general position in projective space Pn are arithmetically

Gorenstein.

(3) (Sums of linked ideals) Suppose that V1 and V2 are ACM subschemes of Pn of

codimension c, with 1 ≤ c ≤ n, having no common components, and whose union

is arithmetically Gorenstein. Then J := IV1 +IV2 is also arithmetically Gorenstein,

but of codimension c+1. This follows from a standard and very useful trick called

the mapping cone: consider the commutative diagram

0 0
↓ ↓

P (−k) Fc ⊕ Gc

↓ ↓
Lc−1 Fc−1 ⊕ Gc−1

↓ ↓
Lc−2 Fc−2 ⊕ Gc−2

↓ ↓
...

...
↓ ↓
L2 F2 ⊕ G2

↓ ↓
L1 F1 ⊕ G1

↓ ↓
0 → IV1 ∩ IV2 → IV1 ⊕ IV2 → J → 0

↓ ↓
0 0

where the short exact sequence at the bottom is standard, and the vertical se-

quences are the minimal free resolutions of IV1 ∩ IV2 (which by hypothesis is

Gorenstein), IV1 , and IV2 , respectively. Then the mapping cone gives the (not

necessarily minimal) free resolution for the cokernel, J :

0 → P (−k) →
Lc−1

⊕
Fc ⊕Gc

→
Lc−2

⊕
Fc−1 ⊕Gc−1

→ · · · →
L1

⊕
F2 ⊕G2

→ F1 ⊕G1 → J → 0.

One checks that the minimal free resolution of P/J has to have length at least c+1

(since V1 and V2 have no common component, so their intersection has codimension



EXPERIMENTS IN COMMUTATIVE ALGEBRA AND ALGEBRAIC GEOMETRY 15

at least c + 1). Hence the intersection is ACM of Cohen-Macaulay type 1, so it is

Gorenstein.

(4) A beautiful example of a powerful result that came about from playing with com-

puter algebra programs (in this case with macaulay) was carried out by Chris

Peterson, in discovering the class of subschemes arising as sections of Buchsbaum-

Rim sheaves. In particular, for Buchsbaum-Rim sheaves of odd rank on P3, the

ideals produced are not saturated, but their saturation is arithmetically Goren-

stein!! (This is a special case of the larger theory.) Of course after you discover

a pattern on the computer, your next job is to prove it!! This was carried out in

[63] and in [60].

A simple example of this procedure is the following. Let P = K[x0, x1, x2, x3].

Consider the 1× 4 matrix A = [x0, x1, x2, x3]. This is the presentation matrix for

the ring P/m ∼= K, and we have the minimal free resolution

0 → P (−4) → P (−3)4 → P (−2)6 B−→ P (−1)4 A−→ P → P/m → 0.

B is a 4 × 6 homogeneous matrix, given by the Koszul resolution (since m is a

complete intersection). Take a general linear combination of the columns of B

with coefficients that are homogeneous polynomials of any degree ≥ 1. This will

be a 4× 1 matrix of homogeneous polynomials. These four polynomials define an

ideal I. It turns out that I is not saturated, but its saturation is a Gorenstein

ideal with five generators, and its minimal free resolution can be written from the

given information.

Exercise 6. Show how Example 6.5 (2) follows from Theorem 6.4.

Exercise 7. Write a program that computes the ideal described in Example 6.5 (4), for

coefficients of arbitrary degree d. Look up the references and write a program that works

for any Buchsbaum sheaf on P3, or on Pn.

Very little is known about Gorenstein rings, but in low codimension a fair amount is

known.

Theorem 6.6. In codimension two, every Gorenstein ring is a complete intersection. In

higher codimension this is no longer true.

Exercise 8. Show that Example 6.5 (2) proves the second statement in Theorem 6.6.

Theorem 6.7 (Buchsbaum-Eisenbud [11]). Every height 3 Gorenstein ideal, I, can be

realized as the ideal generated by the maximal Pfaffians of a t× t skew symmetric matrix,

A, for any odd t. This matrix occurs as the middle matrix in the minimal free resolution

of I:

0 → R(−k) → F2
A−→ F1 → R → R/I → 0.
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Corollary 6.8. Any height three Gorenstein ideal has an odd number of minimal gener-

ators.

This structure theorem of Buchsbaum and Eisenbud is very powerful, and most results

on height 3 Gorenstein ideals rely on it in one way or another. (The main result of

[63] is one exception.) An important example is the work of Diesel [16], who gave a

careful description of the resolutions that actually occur in the Artinian case, and obtained

conclusions about irreducible families of Artinian Gorenstein algebras. Her classification

for the Artinian case was extended to reduced sets of points in [26]; see (5) in section 9

below. Another group of papers describes the possible Hilbert functions of Gorenstein

algebras under various assumptions – cf. for instance [15], [34].

In the literature, there is a very strong correlation between results about codimension

three Gorenstein ideals (or arithmetically Gorenstein subschemes of Pn) and codimension

two Cohen-Macaulay ideals (or ACM subschemes of Pn), and the role played by the

Hilbert-Burch matrix in the latter case is mimicked by the Buchsbaum-Eisenbud matrix

in the latter case. A very recent illustration of this is given by the proof of the Extended

Multiplicity Conjecture for these two cases (cf. [61] and [62]; see also [33], [35], [64]).

7. Weak and Strong Lefschetz properties, and “generality” conditions

In this section we will often consider graded Artinian algebras. Hence we will sometimes

work over the ring R := K[x1, . . . , xn] and sometimes over P = K[x0, . . . , xn]. Let

A = R/I be a graded Artinian algebra. Let L be a general linear form. We have, for each

t ∈ Z, a (vector space) homomorphism

(R/I)t
×L−→ (R/I)t+1.

Definition 7.1. A has the Weak Lefschetz property (WLP) if this homomorphism has

maximal rank, for each t.

We can do the same thing for a general homogeneous polynomial F of degree d:

(R/I)t
×F−→ (R/I)t+d

is again a homomorphism.

Definition 7.2. A has the Strong Lefschetz property (SLP) if this homomorphism has

maximal rank, for all d and all t.

It can be shown that WLP and SLP are open conditions on components of the Hilbert

scheme parameterizing algebras with given Hilbert function (in vague terms). However,

the empty set is also open! In the tutorial we talk a bit about how there can be components
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of the same Hilbert scheme that behave very differently with respect to WLP, based on

the work in [53].

In these notes and in the tutorials, there are three very similar-looking conjectures

about “general” situations. We would like to clarify and compare (and contrast) them

here.

7.1. Minimal Resolution Conjecture. Let Z be a general set of s points in Pn. Then as

mentioned above, the Minimal resolution Conjecture says that the minimal free resolution

of IZ has no ghost terms. Let us examine this a little bit further.

First, what is the Hilbert function of Z? First consider the dimensions of the homoge-

neous components of P :

1,

(
n + 1

1

)
,

(
n + 2

2

)
,

(
n + 3

3

)
, . . .

Eventually these numbers become greater than s. Since the points are general, they

impose the maximum number of conditions on forms of any degree, t. Either this number

is s itself (i.e. the points impose independent conditions) or the number is the dimension

of the whole component of degree t (so there is no form of degree t containing Z). The

first degree in which the ideal is not zero is called the initial degree of IZ , and is denoted

by α. If a1 := dim(IZ)α, this is the number of minimal generators of least degree, and is

forced by the Hilbert function. The Hilbert function of Z has the form

1,

(
n + 1

1

)
,

(
n + 2

2

)
, . . . ,

(
n + α− 1

α− 1

)
,

(
n + α

α

)
− a1, s, s, . . . .

||
s

and we conclude that a1 =
(

n+α
α

)
− s.

Exercise 9. Verify this Hilbert function computation for an ideal of s general points

in Pn.

It is also possible to show that a Hilbert function of this type allows at worst two shifts
in each free module of the minimal free resolution. That is, the resolution has the form

0 →
P (−α− n + 1)an

⊕
P (−α− n)bn

→
P (−α− n + 2)an−1

⊕
P (−α− n + 1)bn−1

→ · · · →
P (−α− 1)a2

⊕
P (−α− 2)b2

→
P (−α)a1

⊕
P (−α− 1)b1

→ IZ → 0.

The content of the Minimal Resolution conjecture is that ai · bi−1 should be 0 for all i,

and this expected value can be computed from the Hilbert function. For example, b1 is

the number of minimal generators of IZ in degree α + 1, and the expected value for b1 is

b1 = max

{[(
n + α + 1

α + 1

)
− s

]
− (n + 1) ·

[(
n + α

α

)
− s

]
, 0

}
.

In a similar way one can compute the expected values of the other ai and bi.
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Exercise 10. Show that equivalently, we have

b1 = max

{(
n + α

α + 1

)
− n ·

[(
n + α

α

)
− s

]
, 0

}
.

As noted above, the Minimal Resolution conjecture is known to be false. The first

counterexample was found by Schreyer, but it was all put into a theoretical framework

by Eisenbud and Popescu [17]. It consists of 11 general points in P6. Nevertheless, the

Minimal Resolution conjecture is known to hold asymptotically thanks to work of Walter

[74] and of Hirschowitz and Simpson [36]. An interesting special case, namely verifying

that b1 has the expected value, is called the Ideal Generation conjecture, and is still open.

7.2. Artinian Minimal Resolution Conjecture. This conjecture is the Artinian ana-

log of the Minimal Resolution Conjecture. It can be viewed as an attempt to address the

following “philosophical” question: How “general” is the Artinian reduction of a general

set of points? The “philosophical” answer to this question is, “Not as general as you

might think!” In other words, among all Artinian algebras with a fixed (generic) Hilbert

function, over “sufficiently many” variables, there is a Zariski open subset consisting of

algebras that are not the Artinian reduction of a reduced, finite set of points.

This conjecture will be discussed in the tutorials, but in brief here is the idea. Fix

a degree, α, and consider a generic K-vector space V ⊂ K[x1, . . . , xn] of dimension

a1 :=
(

n+α
α

)
− s. Let I be the ideal generated by V and Pα+1. Of course part of Pα+1 is

already generated by V .

Exercise 11. Check that the expected number of minimal generators in degree α + 1 is

exactly b1 as computed above. (Hint: use Exercise 10.)

The other expected graded Betti numbers can be computed as above. The conjecture

then states, as above, that there are no ghost terms in the minimal free resolution of I.

That is, we have exactly the same predicted minimal free resolution. The difference is that

in this Artinian context there are no known counter-examples! Even the Artinian analog

of the known counter-examples for points (e.g. 11 general points in P6) fails to pick up

ghost terms. Kreuzer has informed us that he has checked this conjecture experimentally

for very high values of α and n.

In this context the Artinian version of the Ideal Generation conjecture (i.e. verifying

b1) is known to be proved, and is due to Hochster and Laksov [37]. As noted above, you

will revisit this conjecture and perform experiments in the tutorials.

7.3. Ideals of general forms and the Fröberg Conjecture (and beyond). In the

Artinian Minimal Resolution conjecture we restricted ourselves to forms of the same

degree, or at worst of two consecutive degrees. We now allow ourselves complete freedom
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in choosing the number and degrees of the forms. More precisely, fix d1, . . . , dk and

consider ideals formed by general choices of forms of these degrees in R := K[x1, . . . , xn].

We are interested first in the Hilbert function, and then in the minimal free resolution of

such an ideal. There is again an expected Hilbert function, and the most compact way of

describing it is as follows:

Conjecture 7.3 (Fröberg). The coordinate ring of an ideal of general forms satisfies the

Strong Lefschetz property.

We leave it as an exercise to see how this translates to a statement about Hilbert functions.

This conjecture is known to be true in two variables [19] and three variables [1], and in

the case k = n + 1 [73], [76]. Of course the result of Hochster and Laksov mentioned

above is an important contribution as well. See also [3] and [20].

Less seems to be known about the minimal free resolution. Of course one cannot hope

to precisely give the minimal free resolution without first knowing the Hilbert function,

but perhaps one can give good properties anyway. The natural first guess is that there

should be no ghost terms in the minimal free resolution. This, however, has no chance. For

instance, if we start with generators of degrees 4,4 and 8, we see that the two generators of

degree 4 have a Koszul first syzygy of degree 8, so unless other generators enter to nullify

either the generator of degree 8 or the Koszul syzygy, a ghost term is forced. We will

call this a Koszul ghost term. The “Thin Resolution Conjecture” of Iarrobino said that a

general set of forms generate an ideal for which there are no non-Koszul ghost terms. This

was disproved in [54], and together with [55] it was shown how liaison can give a whole

class of examples. A simple example (that also shows how Koszul ghost terms arise) is

the case of general forms in K[x1, x2, x3] of degrees 4,4,4,8. The minimal free resolution

has the form

0 →

 R(−10)
⊕

R(−11)2

 →


R(−8)3

⊕
R(−9)2

⊕
R(−10)

 →

 R(−4)3

⊕
R(−8)

 → R → R/I → 0

We see the Koszul ghost term R(−8) as predicted, but also the non-Koszul ghost term

R(−10). In [54] the minimal free resolution for four general forms of arbitrary degree in

3 variables was completely solved, using liaison and the work of Diesel [16].

8. Liaison Theory

In this section we offer a very sketchy introduction to liaison theory. This is a very

active area recently. For more details we refer the reader to the book [51], the monograph

[40] and to the expository notes [59]. The purpose here is really to give the student an

overview of the main definitions and questions and a few of the results, but including
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almost nothing of the tools and methods used in obtaining the main results. The student

is encouraged to follow the references to get the details.

8.1. Overview. The idea governing liaison theory, which goes back more than a century,

is that if two closed projective subschemes (or two varieties, classically), V1 and V2, are

such that

(a) they have the same dimension and their saturated ideals are unmixed (i.e. no

embedded or isolated components),

(b) they have no common component, and

(c) their union is a complete intersection, X (i.e. IV1 ∩ IV2 = IX)

then a lot of information is passed from one to the other.

Definition 8.1. If the three assumptions above are satisfied, we say that V1 and V2 are

geometrically linked. For emphasis, we sometimes say that they are geometrically CI-

linked. Geometric CI-liaison is the equivalence relation generated by geometric CI-links.

Note that geometric CI-links are not reflexive or transitive in general, so it is necessary

to speak of the equivalence relation generated by such links. For a zero-dimensional

example, in Figure 1, the complete intersection, X consists of the intersection in P2 of

the six “vertical” lines and the four “horizontal” lines, giving 24 points in all. The solid

dots, V1, are thus linked via this complete intersection to the open dots, V2. One of our

first important results is that in P2, any zero-dimensional scheme is in the same CI-liaison

class as any other zero-dimensional scheme. This is not true (with CI-liaison) in higher

codimension.

• •
•
•

•

•

••
•

◦
◦

◦

◦

◦
◦

◦
◦
◦
◦

◦
◦
◦

◦

◦

Figure 1. Geometric link of points

Figure 2 gives a one-dimensional example. Here the complete intersection again has

codimension two, and this time is the intersection of the surface of degree 2 (a union of

planes) and the surface of degree 1. The resulting curve, X, is the union of lines V1 and

V2.

Under this situation, a lot of information can be passed from one to the other, taking

into account the complete intersection, X. Typically, one starts with V1, finds a complete
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Figure 2. Geometric ink of curves

intersection containing it, and looks at the “residual” V2. On the computer, the best way

is via a program such as GenResSeq(I,L) that you wrote in the tutorial.

The hope, classically, was that one could start with an arbitrary V1, even general, and

always “link” down to something simpler, in a series of steps that one understands. In

this way one could get information about V1 from the simpler linked varieties. This works

well for codimension two ACM subschemes, but not otherwise in general. This is reflected

in the Lazarsfeld-Rao property, discussed below, and was first pointed out by Joe Harris.

What kind of information is passed from V1 to V2? Here are some examples.

(1) We have the degree formula deg V1 + deg V2 = deg X. This is obvious since V1

and V2 have no common components, but it is far less obvious in the more general

context described below.

(2) Suppose that V1 and V2 are curves in Pn whose union, X, is a complete intersection

of type (a1, . . . , an−1). Let a := a1+· · ·+an−1. Let g1 and g2 denote the arithmetic

genera of V1 and V2, respectively. Then we have the genus formula

g1 − g2 =
1

2
(a− n− 1)(deg V1 − deg V2).

Note that a is the twist of the last free module in the minimal free resolution of

IX .

(3) The property of being ACM is preserved (and an even stronger statement involving

the cohomology of V1 and V2 is true – see below).

(4) In the ACM case, the Hilbert function of V2 can be computed from that of V1. In

the non-ACM case there is still a formula, but it relies also on the cohomology.

It turns out that the theory is rather complete for codimension two liaison. Now, recall

also from Theorem 6.6 that in codimension two, the arithmetically Gorenstein subschemes

and the complete intersections coincide. To extend to higher codimension, then, it is not

obvious a priori whether our links should continue to be complete intersections, or arith-

metically Gorenstein subschemes. Both directions have proven to be fruitful, although

the latter is a more recent and very active area of research.

8.2. Algebraic Linkage. Notice that deg V1 +deg V2 = deg X in both examples above.

The simplest example of two curves that are geometrically directly linked is the union of
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two lines, given as the intersection of a pair of planes with another plane (see Figure 2).

The problem comes when we try to extend this notion to the case where the curves may

have common components. For example, if the second surface (the plane) contains the

line of intersection of the two planes comprising the first surface, this is still a perfectly

good complete intersection (see Figure 3).

�
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@

@

= ?

' $

?

Figure 3. Algebraic Link

The only natural way to interpret this would be to say that the line of intersection is linked

to itself (since the complete intersection still has degree two), but using only unions of

course we do not have the equality in the definition.

The solution is to use ideal quotients. Furthermore, in order to be as general possible,

we will allow X to be simply arithmetically Gorenstein instead of insisting that it be

a complete intersection. Indeed, our goal will be to remove the assumption (b) at the

beginning of this section, and to weaken (c) as much as possible.

Definition 8.2. If V1 and V2 are subschemes of Pn such that

(a) they have the same dimension and their saturated ideals are unmixed (i.e. no

embedded or isolated components),

(b) they have no common component, and

(c) their union is an arithmetically Gorenstein scheme, X (i.e. IV1 ∩ IV2 = IX)

then we say that V1 and V2 are geometrically G-linked. Geometric G-liaison is the equiv-

alence relation generated by geometric G-links.

Definition 8.3. Two subschemes V1 and V2 are algebraically G-linked if there is a Goren-

stein ideal IX ⊂ IV1 ∩ IV2 such that

IX : IV1 = IV2

IX : IV2 = IV1 .

If X is a complete intersection then we say that V1 and V2 are algebraically CI-linked.

Algebraic G-liaison (resp. algebraic CI-liaison) is the equivalence relation generated by

algebraic G-links (resp. algebraic CI-links). If V1 is linked to V2 we will write V1 ∼ V2, or
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sometimes V1
X∼ V2 if we want to emphasize the specific Gorenstein scheme that performs

the link.

Here are some first results about linkage.

Theorem 8.4. (1) If V1 and V2 are geometrically linked then they are algebraically

linked.

(2) If V1 and V2 are algebraically linked then automatically they are unmixed. More

precisely, the process of performing the ideal quotient IX : IV1 gives a residual

that is unmixed. In fact, the double ideal quotient IX : [IX : IV1 ]] gives the top

dimensional part of V1 so the links lose the information of the lower dimensional

components that you started with. (On CoCoA this is an effective algorithm for

computing the top dimensional part of an ideal.)

(3) If V1 is unmixed and IX ⊂ IV1 is Gorenstein, then IV2 := IX : IV1 is algebraically

linked to IV1. That is, the second equality in the definition automatically holds.

(4) The degree formula (1) continues to hold under algebraic linkage.

(5) If V1 and V2 are curves then the genus formula (2) continues to hold for algebraic

CI-linkage. Furthermore, if IX is Gorenstein with minimal free resolution ending

0 → R(−a) → . . .

(where a now is no longer necessarily the sum of the degrees of the generators of

IX) then the genus formula continues to hold for algebraic G-linkage.

A result about CI-liaison that was known classically, and whose proof is not so hard to

write, is the following. What is really interesting is that there is an analog in G-liaison

(Theorem 8.6), but it is a deep and very recent result.

Theorem 8.5. Any two complete intersections of the same codimension in Pn are in the

same CI-liaison class.

Proof. Although this has been known for a long time, the only written proof of which I

am aware is in the thesis of Phil Schwartau [72]. It is based on the following lemma: If

IX1 = (F1, . . . , Fd−1, F ), IX2 = (F1, . . . , Fd−1, G) and IX = (F1, . . . , Fd−1, FG) then X1 is

directly linked to X2 by the complete intersection X. Verifying this and finding the rest

of the proof is left as an exercise. �

Theorem 8.6 ([12]). Any two arithmetically Gorenstein subschemes of the same codi-

mension in Pn are in the same G-liaison class.

Because of Theorem 8.5, it makes sense to speak of the liaison class of a complete

intersection, and many papers have been written to try to determine when an ideal (or

subscheme) is in this class. Of course the most complete answer is in codimension two,

as we will see.
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Definition 8.7. A subscheme V ⊂ Pn is licci if it is in the CI-linkage class of a complete

intersection. V is glicci if it is in the Gorenstein-linkage class of a complete intersection.

8.3. Some basic questions (and a few answers) about liaison. In this subsection

we point out some natural questions that arise from the definitions and first results that

we have given above. In some cases we provide some comments as well, and in subsequent

subsections we will discuss other answers.

(1) In view of Theorem 8.4 (1), it is conceivable that geometric linkage (CI or G)

generates a different equivalence relation than algebraic linkage (CI or G). This is

known to be true for CI-liaison, but still open for G-liaison.

(2) Are G-liaison and CI-liaison the same equivalence relation? In other words, it is

obvious that if two subschemes are CI-linked in a finite number of steps then they

are G-linked in a finite number of steps. But is the converse true? See Example 8.8.

(3) One might ask why we have to stop with X arithmetically Gorenstein, and cannot

in fact allow X to be arithmetically Cohen-Macaulay. In the case of points in

P2 (or indeed, in any Pn) it is clear that there is nothing to study, since any

zero-dimensional scheme is ACM, so the same is true of the union.

More interestingly, it was shown by Charles Walter [75] that geometric CM-

liaison is a trivial equivalence class. (Sometimes showing that something is trivial

is a deep result!!) See also Exercise 12 below.

(4) What are necessary and sufficient conditions for two subschemes to be in the same

liaison class, CI or G? This is known in codimension two but is open in general.

(5) Do the liaison classes themselves have any common structure?

(6) Are there any interesting applications of liaison theory?

(7) It was noted above that (direct) linkage is rarely reflexive. That is, it is almost

never true that for a given scheme V there is a complete intersection (or an arith-

metically Gorenstein scheme), X, for which IV : IX = IV . Of course under geo-

metric links this has no chance, but even under algebraic links it is not possible.

As a trivial example, if V is a set of 7 points in P2 in general position then it lies

on no conics. But in order for IX : IV = IV , we need V to be linked to itself by

a complete intersection of degree 14, and the prime factorization of 14 is (2)(7).

Hence this is impossible.

Subschemes V of Pn for which IX : IV = IV for some arithemtically Gorenstein

scheme X (possibly a complete intersection) are called self-linked. These are very

interesting. We refer the student to the paper [70] of Rao for many results on this

subject.

Exercise 12. Find an ACM curve, X, and a curve C1, with IX ⊂ IC1 , such that if

IC2 := IX : IC1 then

IX : IC2 6= IC1 , and deg C1 + deg C2 6= deg X.
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Example 8.8. Let C1 be a rational normal curve in P4 and let C2 be a line in P4. Then

C1 and C2 are G-linked in finitely many steps (in fact it can be done in three or fewer

steps), but they are not CI-linked in any number of steps. (This can be shown using

Theorem 2.5 of [44], for instance.)

8.4. ACM subschemes. We have focused quite a bit in these notes on the general topic

of ACM subschemes of Pn, and indeed they are the most basic in many ways (as we have

seen). It makes sense to turn to them also in the context of liaison theory. The most

complete answer, as one might expect, comes in codimension two. The following was

known classically, thanks to work of Apery [2] and Gaeta [21, 22], and was placed in a

modern setting by Peskine and Szpiro [67].

Theorem 8.9 (Apery, Gaeta, Peskine-Szpiro). The codimension two ACM subschemes

of Pn form a liaison class.

We mentioned already that the ACM property is preserved, so the new “half” of this

theorem says that any two ACM codimension two subschemes are in the same liaison class

(and since it is codimension two, we do not have to specify CI or G). That is, a codimension

two ACM subscheme of Pn is licci. We saw in Example 8.8 that in codimension three (or

more) this is no longer true: there are ACM subschemes that are not licci. However, we

have the following conjecture:

Conjecture 8.10. Any codimension 3 ACM subscheme of Pn is glicci.

This was first asked as a question in [40], Question 1.6. In fact, the question was asked

for ACM subschemes of any codimension, but to hedge our bets a little here, we conjecture

it only in codimension three.

Note that Theorem 8.9 implies, in particular, that any zero-dimensional scheme in P2

is licci, so they are all in the same liaison class.

Theorem 8.9 is not hard to prove. For instance, it follows very quickly from some stan-

dard methods (the so-called mapping cone construction) that if V1 is ACM of codimension

two and IX ⊂ IV1 is obtained using minimal generators of IV1 (which is always possible),

then IV2 := IX : IV1 is the saturated ideal of the residual ACM subscheme, V2, and IV2

has one fewer minimal generator than does IV1 . This observation alone is enough to prove

that V2 is licci, and hence to prove the theorem. But Gaeta gave a much deeper analysis

of the minimal generators and the Hilbert-Burch matrices involved.

8.5. Non-ACM curves: necessary and sufficient conditions for linkage. For the

non-ACM case, we will restrict to curves, for simplicity. But it should be noted that
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Rao has solved the problem in the general case of codimension two [69] locally Cohen-

Macaulay subschemes. It was extended to the non-locally Cohen-Macaulay situation by

Nagel [65] and Nollet [66].

In the interest of keeping these notes as simple as possible, we will also restrict ourselves

to even liaison for the non-ACM case.

Definition 8.11. Two subschemes V, V ′ ⊂ Pn are evenly linked if there is a sequence of

links

V ∼ V1 ∼ · · · ∼ Vk ∼ V ′

where k is odd (so there is an even number of links). The set of all subschemes that can

be obtained in this way is called the even liaison class of V , and the equivalence relation

so generated is called even liaison.

The case of curves in P3 was solved by Rao in a separate paper, [68]. Recall that above

we defined the deficiency module, also known as the Hartshorne-Rao module, of a closed

subscheme of Pn. More precisely, if the closed subscheme is a curve C (in our setting),

we have

M(C) :=
⊕
t∈Z

H1(Pn, IC(t)).

We have seen that C is ACM if and only if M(C) = 0. It is also true that if IC is

unmixed (as we are assuming), then M(C) has finite length. Furthermore, if you are not

comfortable with sheaf cohomology, there is an isomorphism between the K-dual of M(C)

and

Extn
P (P/IC , P )(−n− 1).

This also has the advantage of being much easier to compute on CoCoA (although cur-

rently the Ext function has a bug, which the CoCoA team promises will be fixed soon).

Example 8.12. Let C be a set of two skew lines in P3. We can compute M(C) either

through the sheaf definition or via Ext. In the former case, the short exact sequence of

sheaves

0 → IC(t) → OP3(t) → OC(t) → 0

leads to the long exact sequence in cohomology

0 → H0(Pn, IC(t)) → H0(OPn(t)) → H0(Pn,OC(t)) → H1(Pn, IC(t)) → 0,

which in turn translates (via isomorphism) to

0 → (IC)t → Pt → H0(Pn,OC(t)) → M(C)t → 0.

The third term is easy to compute since C is the union of two P1’s. We see that M(C) ∼= K,

and the unique non-zero component occurs in degree 0.

From the Ext point of view, it is easy to compute using the minimal free resolution

0 → P (−4) → P (−3)4 → P (−2)4 → P → P/IC → 0.
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The relevance of this module to liaison was first noted by Gaeta, who observed that the

vector space dimensions of its components are preserved up to re-ordering and shifting.

But the first modern proof that this module is important to liaison is due to Hartshorne,

who proved the following.

Theorem 8.13 (Hartshorne). Let C1 and C2 be evenly linked curves in Pn. Then M(C1)

is isomorphic to some shift of M(C2).

There is an analog for odd liaison which also involves the dual of M(C). Also, it is not

hard to extend this theorem (including the case of an odd number of links) to subschemes

of any dimension [50].

The amazing result, due to Rao, is that the converse of Theorem 8.13 is true for curves

in P3.

Theorem 8.14 ([68]). Let C1, C2 ⊂ P3. If M(C1) is isomorphic to some shift of M(C2)

then C1 is evenly linked to C2.

Again, there is a version for odd liaison. There is also a theorem for codimension two,

but it is phrased in terms of stable equivalence classes of vector bundles rather than in

terms of the cohomology modules.

It is known that Theorem 8.14 is not true for curves in higher projective space, at least

under complete intersection links. For instance, in Example 8.8 both curves have trivial

deficiency module. An open question is the following, which we will state as a conjecture:

Conjecture 8.15. If M(C1) ∼= M(C2)(δ) for some δ ∈ Z for curves C1, C2 ⊂ Pn (or at

least P4, say) the C1 and C2 are evenly G-linked.

Exercise 13. The following exercises can be done on CoCoA, and test both your under-

standing of the material and your abilities with CoCoA.

(1) Use liaison to find smooth curves C1, C2 ⊂ P3, both of degree 6 and genus 3, such

that C1 is ACM and CF2 is not ACM.

(2) Construct an ACM curve of degree 2005 in P3. Construct a non-degenerate, non-

ACM curve of degree 2005 in P4.

(3) (a) Let Z1 be a set of three non-collinear points in P3 and X1 a complete inter-

section of three quadrics containing Z1 (i.e. IX1 = (Q1, Q2, Q3) ⊂ IZ1). Let

Y1 be the residual (i.e. linked) set of points. Find the minimal free resolution

of IY1 .

(b) Let Y2 be a set of eight points on a twisted cubic curve in P3. Find a way to

construct such a set of points. Find the minimal free resolution of IY2 .

(c) Let Z3 be a set of 13 general points on a smooth quadric surface in P3. Find

a way to construct such a set of points in P3. Let X3 be a sufficiently general
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complete intersection of type (3, 3, 3) containing Z3, and let Y3 be the residual

set of points. Find the minimal free resolution of IY3 .

(d) What do you notice that the above mimimal free resolutions have in common?

Inspired by the above examples, and extending the notion of a complete intersection,

we have the following.

Definition 8.16. An almost complete intersection (ACI) is an ACM subscheme of Pn

whose number of minimal generators is one more than the codimension. An Artinian ideal,

I ⊂ K[x1, . . . , xn], is an almost complete intersection if it has n + 1 minimal generators.

This provides a rather useful way of obtaining arithmetically Gorenstein subschemes of

projective space, via the following theorem. The proof is via the mapping cone procedure

mentioned above, and we omit the details (but refer the reader to [51]).

Theorem 8.17. If V is an ACI and if X is a complete intersection such that IX ⊂ IV and

the minimal generators of IX are all minimal generators of IV , then the residual scheme

V ′ defined by IX : IV =: IV ′ is arithmetically Gorenstein.

This was used to great advantage in [54], where ideals of n + 1 general forms in n

variables were studied. This was especially fruitful when n = 3, thanks to the fact that

Diesel [16] had classified the possible minimal free resolutions of Gorenstein ideals. This

reflects a successful application of the classical philosophy described at the beginning of

this section: we use liaison to transfer a problem to a situation that we understand, and

pull the information back to the study of the ideals in which we are actually interested.

8.6. The structure of an even liasion class. Whenever you have an equivalence rela-

tion on a set (e.g. the integers modulo n) it is of interest to know (a) how many equivalence

classes there are, (b) what does the set of equivalences classes look like, (c) necessary and

sufficient conditions for two elements to be in the same class, and (d) whether any one

class has any particular structure (and in particular, if all classes have the same structure).

In this section we describe what is known about this latter question for the equivalence

relation of even liaison. As with many other questions about liaison, the only known

result is in codimension two, and there we have a fairly complete picture. As usual, we

refer to [51] for the details, and we just give the idea.

We have seen that given a curve C in P3, the Hartshorne-Rao module M(C) is an in-

variant, up to shift, for the even liaison class of C. But what shifts occur? We assume now

that C is not ACM, for the sake of discussion of the shifts of the module, although basic

double linkage works perfectly well for ACM curves as well. A very simple construction

called basic double linkage, introduced by Lazarsfeld and Rao [46] has the effect of starting

with C and producing a new curve C1 with the property that M(C1) ∼= M(C)(−d) for
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some (any) d ≥ 1. (Note that M(C)(−d) is a rightward shift of the module by d places.)

The ideal of IC1 is given by

IC1 = G · IC + (F ),

where F ∈ IC is a homogeneous polynomial of any degree, and G ∈ Pd is a homogeneous

polynomial of degree d, such that (F, G) is a regular sequence. Geometrically, C1 is

obtained by starting with C, choosing a surface F containing C, and adding to C the

hypersurface section of F cut out by G. The process is called “basic double linkage”

because, as the name suggests, C1 is linked to C in two steps. (It is not hard to see this,

and is left as an exercise.)

What about the other direction? It is not hard to show (see e.g. [49]) that for d

sufficiently large, M := M(C)(d) (a leftward shift) is not the Hartshorne-Rao of any

curve. (This was generalized to any dimension in [8].) Hence clearly there is a largest d

for which M(C)(d) actually occurs as the Hartshorne-Rao module of some curve. One

might hope that the set S1 of curves in the even liaison class of C for which the module

occurs in this leftmost shift is special in some way.

One can also consider the set S2 of curves in the even liaison class of C that have the

smallest possible degree. Clearly if C is not ACM then there is no chance of finding a

curve of degree 1. Do all even liaison classes contain a curve of degree 2? In any case,

the degree is clearly bounded below (and not above, by the discussion above). Similarly,

one can consider the set S3 of curves in the even liaison class of C that have the smallest

arithmetic genus.

What is surprising is that S1, S2 and S3 coincide! This is a consequence (among many!)

of the Lazarsfeld-Rao Property. More precisely, let L be an even liaison class of curves

in P3. We partition L =
⋃

t≥0 Lt according to the shifts of the Hartshorne-Rao module,

where L0 = S1 (described above). The Lazarsfeld-Rao Property says that

• Given any two elements, C0 and C ′
0, of L0, there is a flat deformation from C0 to

C ′
0 through curves all in L0. The elements of L0 ar called the minimal elements

of the even liaison class L.

• Given any minimal element C0 ∈ L0 and any C ∈ Lh (with h ≥ 1), there is a

sequence of basic double linked curves C0, C1, . . . , Ck (k ≤ h), such that there

exists a flat deformation from Ck to C all through curves in Lh. In fact this

sequence of basic double links can be assumed to each use a linear form for the

polynomial G (see the definition of basic double linkage above), in which case we

have k = h.

This property was shown by Lazarsfeld and Rao [46] to hold for the even liaison class

of a “general” curve of large degree in P3. (But a caveat is that the even liaison class of

a “general curve” is actually rather special.) The property was proposed to hold in much

greater generality, and important tools were developed and first cases proved, by Bolondi
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and Migliore in [8]. The property was shown to hold for all even liaison classes of curves

in P3 by Martin-Deschamps and Perrin [48], who in fact showed a great deal more. At

about the same time it was shown by Ballico, Bolondi and Migliore [4] to hold for all

locally Cohen-Macaulay codimension two even liaison classes in Pn. This was extended

in different directions by Bolondi and Migliore [10], Nagel [65] and Nollet [66].

Observe that knowing that the Lazarsfeld-Rao Property holds in effect tells you that

if you “know” one minimal element of the even liaison class, in many ways you know

the whole class. For instance, you know all the possible degrees and genera that occur

in the class! In [9] this idea was used to show that all arithmetically Buchsbaum curves

specialize to stick figures, a special case of the more general Zeuthen problem (that was

later shown to fail to hold in full generality by Hartshorne [32]).

8.7. Higher codimension and divisors. What about all of these questions in higher

codimension? As you will see in Problems 10 and 11 in Section 9, the problem of finding

a structure like the Lazarsfeld-Rao Property is wide open, for both CI and Gorenstein

liaison. It may well be that there is nothing so nice to be found. As for necessary

and sufficient conditions for linkage, we gave some conjectures above, but again the big

questions are open.

It should be noted, though, that a broad picture has emerged of Gorenstein liaison in

any codimension as a theory of divisors on ACM subschemes. See [51] for an exposition;

another expository paper is [52]. It is based in large part on the following result, which

is called basic double G-linkage. As with basic double linkage, it is very useful in liaison

theory, and also as with basic double linkage it is also very useful beyond liaison theory.

Theorem 8.18 ([40]). Let I ⊂ J be saturated homogeneous ideals of P such that

codim I + 1 = codim J . Let G ∈ P be a form of degree d such that I : G = I. Let

J1 := I + G · J . Then

(a) deg J1 = d · (deg I) + deg J (where deg refers to the degree of the scheme defined

by the ideal).

(b) If I is ACM and smooth then J1 is G-linked to J in two steps. (We assume

“smooth” here for simplicity; a much more general statement is in fact true.)

(c) We have a short exact sequence

0 → I(−d) → J(−d)⊕ I → J1 → 0,

where the first map is given by F 7→ (F, GF ) and the second map is given by

(A, B) 7→ GA−B.

Note that the above also works if J is Artinian and I defines a zero-dimensional scheme.

If I = IS and J = IC , J1 = IC1 (say), then C and C1 are divisors on S, and C1 is obtained
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from C by adding the hypersurface section cut out by G. Compare this with the geometric

description of basic double linkage given above. The following was also shown in [40]:

Theorem 8.19. Let S be a smooth (again, this can be generalized) ACM subscheme of Pn

and let C be a divisor on S. Then any effective divisor C ′ ∈ |C +tH| is evenly G-linked to

C, where H is the class of a hyperplane section and t is any integer, positive or negative.

Many partial results along the lines of the conjectures given above have been shown

using this result.

9. Open Problems

In this section we highlight some open problems associated with the material in these

notes. The solution of some would attract more attention than others, but all are of

interest.

(1) We know the possible Hilbert functions for sets of points in projective space, Pn.

What are the possible Hilbert functions for sets of points in Pn, n ≥ 3, with UPP?

(2) What are the possible Hilbert functions of Artinian Gorenstein algebras of codi-

mension c ≥ 4? What are the possible minimal free resolutions for Artinian Goren-

stein algebras of codimension c ≥ 4? (This problem is probably not tractable.)

(3) As a special case of great interest, it is known that in codimension 3 all Gorenstein

algebras have Artinian reduction with unimodal Hilbert function, and it is known

that in codimension ≥ 5 this is not true, but it is open whether it is true or not in

codimension 4. In fact, it is not known if there is any reduced set of points that

is arithmetically Gorenstein, but whose h-vector is not unimodal.

(4) Do all Gorenstein algebras in codimension three have Artinian reduction with

WLP? A special case of this was shown in [29]: every codimension three Artinian

complete intersection has WLP. To prove this it was necessary to invoke some

unexpected machinery, in particular the Grauert-Mülich theorem on rank two

vector bundles on P2.

(5) Is it true that for any Hilbert function that exists for an Artinian Gorenstein

algebra, there is a reduced arithmetically Gorenstein set of points whose Artinian

reduction has this Hilbert function? The best result in this direction is that in [58],

where it is shown in the affirmative for any so-called SI-sequence. In codimension 3

it was shown in [26] that even for every set of graded Betti numbers that exists for

an Artinian Gorenstein algebra there exists a reduced, arithmetically Gorenstein

set of points whose Artinian reduction has this set of graded Betti numbers.

(6) Find other constructions of Gorenstein (or level) algebras besides those given

above. One was given in [7] and [6].

(7) Almost all of the above questions can be asked also for level algebras (see Remark

6.2). But here even in three variables very little is known. The problem is that we
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are missing a structure theorem analogous to the Buchsbaum-Eisenbud theorem

mentioned above. We focus on three questions for the case of level algebras in

three variables. All of these are considered carefully in [23], but we are far from a

complete solution.

(a) What Hilbert functions can occur for an Artinian level algebra in three vari-

ables? Recall that this is known for the Gorenstein case. Some partial results

can also be found in several recent papers of Zanello.

(b) Is it true that every Hilbert function that occurs for an Artinian level algebra

in three variables lifts to a reduced set of points (with level Artinian reduction,

of course)?

(c) Does every Artinian level algebra in three variables have the Weak Lefschetz

Property? A weaker question is whether every Artinian level algebra in three

variables has unimodal Hilbert function. [Note: after our course ended, a

paper of Zanello appeared [77] which gave examples of level Artinian algebras

with non-unimodal Hilbert functions, and with unimodal Hilbert functions

but failing to have the Weak Lefschetz Property.]

(8) The questions and conjectures in Section 7 are of great interest (and possibly of

great difficulty).

(9) Similarly, the questions and conjectures in Section 8 are of great interest and are

being actively studied, especially Conjecture 8.10 and Conjecture 8.15.

(10) Is the Lazarsfeld-Rao Property (or some analog) true for even CI-liaison classes in

higher codimension?

(11) In higher codimension the Lazarsfeld-Rao property is known to fail for Gorenstein

liaison (cf. [51]). Find a good conjecture for the structure of an even Gorenstein

liaison class in higher codimension. You get more points if your proposed property

specializes to the known Lazarsfeld-Rao Property in codimension two, and even

more points if you prove your conjecture!

Exercise 14. Write programs to test some of these questions, and make conjectures if

possible.
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[20] R. Fröberg, J. Hollman, Hilbert series for ideals generated by generic forms, J. Symbolic Comput.

17 (1994), 149–157.
[21] F. Gaeta, Sulle curve sghembe algebriche di residuale finito, Annali di Matematica s. IV, t. XXVII

(1948), 177–241.
[22] F. Gaeta, Nuove ricerche sulle curve sghembe algebriche di residuale finito e sui gruppi di punti del

piano, Ann. di Mat. Pura et Appl., ser.4, 31 (1950), 1–64.
[23] A.V. Geramita, T. Harima, J. Migliore and Y.S. Shin, The Hilbert function of a level algebra, to

appear in Memoirs of the Amer. Math. Soc.
[24] A.V. Geramita, P. Maroscia and L. Roberts, The Hilbert Function of a Reduced k-Algebra, J. London

Math. Soc. 28 (1983), 443–452.
[25] A.V. Geramita and J. Migliore, Hyperplane Sections of a Smooth Curve in P3, Comm. Alg. 17

(1989), 3129–3164.
[26] A.V. Geramita and J. Migliore, Reduced Gorenstein Codimension Three Subschemes of Projective

Space, Proc. Amer. Math. Soc. 125 (1997), 943-950.
[27] E. Gorla, The general hyperplane section of a curve, Trans. Amer. Math. Soc. (2005).
[28] G. Gotzmann, Eine Bedingung fur die Flachheit und das Hilberpolynom eines graduierten Ringes

Math. Z. 158 (1978), 61-70.
[29] T. Harima, J. Migliore, U. Nagel and J. Watanabe, The Weak and Strong Lefschetz Properties for

Artinian k-algebras, J. Algebra 262 (2003), 99-126.
[30] R. Hartshorne, “Algebraic Geometry,” Springer-Verlag, Graduate Texts in Mathematics 52 (1977).
[31] R. Hartshorne, Connectedness of the Hilbert scheme, Math. Inst. des Hautes Etudes Sci. 29 (1966),

261–304.
[32] R. Hartshorne, Families of curves in P3 and Zeuthen’s problem, Mem. Amer. Math. Soc. 130 No.

617 (1997).
[33] J. Herzog and H. Srinivasan, Bounds for multiplicities, Trans. Amer. Math. Soc. 350 (1998), 2879–

2902.
[34] J. Herzog, N.V. Trung and G. Valla, On hyperplane sections of reduced irreducible varieties of low

codimension, J. Math. Kyoto Univ. 34-1 (1994), 47–72.



34 JUAN MIGLIORE

[35] J. Herzog and X. Zheng, Notes on the Multiplicity Conjecture, preprint 2005.
[36] A. Hirschowitz, and C. Simpson, La Résolution minimale de l’idéal d’un arrangement général d’un
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[54] J. Migliore and R. Miró-Roig, On the minimal free resolution of n + 1 general forms, Trans. Amer.

Math. Soc. 355 No. 1 (2003), 1–36.
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