
Modular Methods in CoCoA

What are modular methods?

When you have to do a quick calculation on the back of an envelope, you might calculate the sum or product of
two (small) polynomials, and you would most likely use a direct method, i.e. all computations and intermediate
results are in the same ring.

A modular method is a more indirect way of calculating: to effect a computation in a ring R, we do most of
the work in one or more quotient rings R/I1, R/I2, . . . and then reconstruct the answer back in R. There are
two main reasons for doing this: it turns out to be faster than a direct approach; or we do not know any direct
way of finding the answer.

An example is a (partial) test of divisibility for Z[x]. To test whether f divides g we could simply apply long
division, and check that the remainder is zero. But the long division could be costly if f and g are large. A much
quicker partial test would be to see whether f(0) divides g(0); if not then surely f cannot divide g. Similarly, we
could check the values at x = 1 and x = −1. Only if all these partial checks pass, do we embark on the lengthy
long-division computation. This is a (partly) modular method because evaluating a polynomial at x = α is the
same as reducing it modulo (x− α).

Modular methods can be applied to many computations in the rings of integers, rational numbers or algebraic
numbers, and to computations involving polynomials or matrices over these rings. They cannot be used with
approximate data, nor when the arithmetic ordering on numbers is important.

Some modular methods are probabilistic: that is, the answer computed may be correct only with a certain
probability. The probabilistic methods offer greater speed than their deterministic counterparts, but the result
should be checked. In some cases it is possible to estimate the probability of obtaining a wrong result — if the
probability is low enough, you may be willing to skip the verification of the result.

There are two common problems associated with modular methods. One is bad reduction when the modular
computation is not faithful to the non-modular case, i.e. the result obtained is not the modular reduction of
the true answer. Typically bad reduction occurs when a test for equality in the modular image gives a different
result from the corresponding test in the non-modular computation. The other problem is reconstruction, or
how to deduce the non-modular result from the modular answer. Since modular reduction discards information,
we can achieve reconstruction only by adding in information about the size or nature of the true result — this
complementary information must be deduced from the original inputs.

Motivation

A very basic algebra system might offer only the four fundamental arithmetic operations on polynomials in Q[x].
Before long we would want to extend its repertoire, most particularly to compute GCDs, which are essential if
we want to use rational functions. Luckily, Euclid’s algorithm adapts readily to Q[x]. Not so luckily, it turns
out to be hideously slow.

It is curious how one of the oldest known algorithms became the focus of intense research activity more than
2000 years after its discovery. The villain was “intermediate expression swell”: although inputs and output
are of modest size, the algorithm generates intermediate results with enormous coefficients. In contrast if we
apply the same algorithm to polynomials in Fp[x], we can be certain that no intermediate result has enormous
coefficients: indeed no coefficient can ever exceed p−1. In fact, by choosing a suitable p we can indeed calculate
the GCD of two polynomials in Q[x] avoiding the dreaded villain.

Another case where modular methods arise is in polynomial factorization. The simplest case is factorization
in Z[x]. Theoretically the problem had been solved several centuries ago, but the method is feasible only for
quite small examples — the method is modular and has been ascribed to Kronecker or Newton. The crucial
modern breakthrough was a fast algorithm for factorizing in Fp[x] (due to Berlekamp). Now the only known
factorization algorithms feasible for non-trivial cases work via factorization in Fp[x].

1

Summary of examples and non-examples

Later on we shall investigate two particular cases where modular methods work especially well. Here I mention
a variety of applications enjoyed by modular methods.

Some examples

The two uses of modular methods we shall look at more closely are in the computation of GCDs in Z[x] and
for factorization in Z[x]. I have chosen these two particular examples partly because I am familiar with them,
and partly because of their historical importance in stimulating the development of modular methods during
the early years of computer algebra.

Calculating the determinant of an integer matrix benefits greatly from modular methods. We use Hadamard’s
bound to limit the size of the result, though it can be quite loose in some cases (implying a certain waste of
computation). The waste can be almost entirely eliminated by using a probabilistic termination criterion.

Modular methods work well for solving linear systems with integer or rational entries. Some care is required
because the solutions are generally rational numbers — rational numbers can be reconstructed from their
modular images, as we shall soon see.

A more complex example is the computation of GCD/factorization in Z[x1, . . . , xn]. We first apply a modular
reduction from multivariate to univariate, then use modular methods to calculate the univariate result, and
finally reconstruct the multivariate answer from the univariate one.

Some non-examples

You might be wondering whether modular methods can be applied universally. Unfortunately not. They cannot
be applied to algorithms which depend on the arithmetic ordering of integers, for instance Euclid’s algorithm
on integers. Euclid’s algorithm makes use of the ordering when computing the (least positive) remainder. All
ordering information is lost when we reduce modulo p.

A similar example is the computation of Hermite normal form of a matrix of integers — internally the algorithm
computes GCDs.

Currently no one knows of a completely satisfactory way to use modular methods for computing Gröbner bases.
The Gröbner trace algorithm is probabilistic, but it is costly to verify the result and difficult to estimate the
probability of it being wrong; so its usefulness is limited. Arnold has come up with some promising results
regarding the use of modular methods provided the Hilbert function is known.

There are some cases where modular methods bring no benefit. For instance, addition of polynomials in Z[x] is
so simple that the overheads of reduction and reconstruction render modular methods inappropriate. In general,
it is often unclear whether modular methods would yield better performance when applied to algorithms whose
final result is bigger than any intermediate result: for instance, computing the composition of two polynomials
in Z[x].

Reconstruction techniques

An obvious limiting factor on the use of modular methods is the existence of an appropriate reconstruction
algorithm. Here I present several such algorithms, ranging from very simple to rather involved.

Reconstruction from Z/m to Z

The complementary information we need in this case is a range of width at most m containing the true answer.
Typically we know that the value to be reconstructed n ∈ Z satisfies −m/2 < n < m/2. Reconstruction then
entails simply taking the residue class representative of least absolute value; the result is obviously unique.

2

Normally we use theoretical results to determine a bound B for the absolute value of the true answer n. We then
conduct modular computations sufficient to achieve a “precision” of at least B, at which point we are certain
that reconstruction will work correctly. For good efficiency we need a bound B which is usually reasonably
tight.

Reconstruction from Z/m to Q

The problem is to reconstruct p/q ∈ Q given its image r ∈ Z/m. As in the case of reconstructing an integer we
also need information about how big p and q could be. If we have available a value d which is a small multiple
of q then we can simply apply integer reconstruction to dr to obtain the numerator n; finally we cancel any
common factors between n and d.

If we do not know any small multiple of q then it is sufficient to know upper bounds qmax for q and pmax for
p. For the algorithm to work we must have m > 2pmaxqmax; this condition guarantees that the reconstructed
rational is unique (if it exists at all). In this case we can use the algorithm published by Wang, Guy, and
Davenport (the WGD Algorithm).

The algorithm derives from the following observation. Suppose p/q ≡ r mod m. Equivalently, there is an integer
k such that p = rq − km (without modulus). Dividing this by mq we find that∣∣∣∣ r

m
− k

q

∣∣∣∣ =
∣∣∣∣ p

mq

∣∣∣∣ <
1

2qmaxq
≤ 1

2q2

In other words, k/q approximates r/m exceptionally well given the size of its denominator. Such exceptionally
good approximations will always appear as a continued fraction convergent for r/m — this is not an obvious
result.

The algorithm is very simple. Take the last continued fraction convergent for r/m with denominator not
exceeding qmax; call its denominator q. Compute p = rq mod m. If |p| ≤ pmax return the answer p/q, otherwise
return non-existant.

Recall that the continued fraction convergents can be computed easily using a form of Euclid’s algorithm. A
slight improvement to the WGD algorithm was found by Encarnacion.

Reconstruction of algebraic numbers from modular images

Let Q(α) be an algebraic number field, and let mα be the minimal polynomial of α over Q. Let p be a prime
which does not divide any denominator in mα. Suppose that mα is squarefree modulo p, and let mβ be a factor
of mα modulo p. Then there is an algorithm to reconstruct elements of Q(α) from their images modulo (pk,m∗

β)
where m∗

β is the p-adic factor corresponding to mβ . The algorithm was published by Lenstra, uses LLL lattice
reduction, and is too complicated to describe here.

Reconstruction of univariate polynomials from their values

The classical method for reconstructing a univariate polynomial from its values (y1, . . . , yn) at distinct points
(x1, . . . , xn) may be summarized in a single formula:

n∑
i=1

yi

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

There is one particular case worthy of special mention: if n is a power of two and the xi are all the n-th roots
of unity then the reconstruction can be effected by an (inverse) fast fourier transform

There is an even simpler method in the case of f ∈ Z[x] where we know good bounds on the coefficients of f :
we can simply read off the polynomial from its value at a single large point. For example, let f be a polynomial
with all coefficients bounded in absolute value by 49; then given f(100) = 2999907 we can deduce immediately
that f = 3x3 − x + 7, and the result is obviously unique. This approach works best if all coefficients have more
or less the same size, and we have a good bound for their size.

3

Ben-Or and Tiwari’s method for sparse multivariate polynomials

Ben-Or and Tiwari’s method reconstructs an element f ∈ R[x1, . . . , xn] from its evaluations in R. It is partic-
ularly well suited to the reconstruction of very sparse polynomials: it presupposes only knowledge of an upper
bound on the number of terms in the polynomial. In particular, it does not require any knowledge of the degree
of the polynomial nor the size of its coefficients. Frankly, I was amazed when I first heard of the existence of
this algorithm.

In the presentation of the algorithm I shall assume R = Z; we shall see why later. Let t be the number of terms
in f ; so we may assume that f =

∑t
i=1 ciπi where the ci ∈ R \ {0} and the πi are distinct power products. Let

p1, . . . , pn be the first n prime numbers, and perform the following 2t + 1 evaluations: vk = f(pk
1 , . . . , pk

n) for
k = 0, 1, . . . , 2t. These are the only evaluations of f we shall need.

Our careful choice of evaluation points allows us to write the vk in an alternative manner: vk = c1m
k
1 +· · ·+ctm

k
t

where each mj is the value of πj at the point (p1, . . . , pn); observe that the mj are distinct. This particular form
indicates that the sequence of the vk satisfies a recurrence of order t. That is, there exist integers α1, . . . , αr for
which:

vk = α1vk−1 + α2vk−2 + · · ·+ αtvk−t for k ≥ t

Moreover, the αi are related to the mj in the following way:

xt + α1x
t−1 + α2x

t−2 + · · ·+ αt =
∏
j

(x−mj)

We can use polynomial factorization to obtain the mj once we know the αi. And the αi we can find via linear
algebra: they are the unique solution to this matrix equation


v0 v1 · · · vt

v1 v2 · · · vt+1

...
...

. . .
...

vt vt+1 · · · v2t




αt

αt−1

...
α1

−1

 = 0

Now we have the values of the mj ; the corresponding power product can be found simply by counting how
many times each prime pi divides mj . We find the value of the coefficients in f by solving this linear system

m0
1 m0

2 · · · m0
t

m1
1 m1

2 · · · m1
t

...
...

. . .
...

mt−1
1 mt−1

2 · · · mt−1
t




c1

c2
...
ct

 =

 v0

v1
...vt−1



Let me reiterate that we have reconstructed f from its values at only 2t + 1 points regardless of the degree of
f . One point which is not very evident from this presentation is that the values of the vk, the mj and the αi

tend to be rather large.

Zippel’s method for sparse multivariate polynomials

Zippel’s method reconstructs f ∈ R[x1, . . . , xn] from various evaluations of f in R. It has several merits
including general applicability and good speed. In contrast, its main weak point is that it is probabilistic and
could produce a wrong result; so it should be used only where the result can be verified in some way.

The prerequisites for using the algorithm are:

• a procedure for evaluating f at a point of our choice in Rn

• a univariate reconstruction algorithm (reconstructs g ∈ R[x] from its values in R)

• an upper bound for the degree of f in each indeterminate

• a plentiful supply of elements of R (problems can arise if R is small and finite)

4

The probabilistic aspect derives from the fact that we make an initial choice of a point (a1, . . . , an) ∈ Rn and
we will assume thereafter that (for s = 2, . . . , n − 1) if f(x1, . . . , xs, as+1, . . . , an) =

∑
ciπi where ci ∈ R \ {0}

and πi are distinct power products then f =
∑

Ci(xs+1, . . . , xn)πi for some polynomials Ci.

For simplicity we present the method for the case n = 2; the extension to the general case appears as one of
the exercises.

Let d1 be the bound for the degree of f in x1, and d2 the bound for x2.

Pick the starting point (a1, a2) ∈ R2; in fact, we will never use a1.

Pick distinct values p0, p1, . . . , pd1 ∈ R, evaluate ui = f(pi, a2) for each i. Apply univariate lifting to obtain
f(x1, a2) ∈ R[x1].

Extract the support S of f(x1, a2). That is S = {π1, . . . , πs} where f(x1, a2) =
∑s

i=1 ciπi with ci ∈ R \ {0} and
πi distinct power products in the indeterminate x1.

Here we make the implicit probabilistic assumption that f(x1, x2) =
∑s

i=1 Ci(x2)πi and proceed to calculate
values of all the Ci simultaneously.

Pick s distinct points α1, . . . , αs ∈ R1 for which the matrix with (i, j) entry being the value of πi(αj) is
non-singular. Here we need R to be sufficiently large.

Pick distinct values p0, p1, . . . , pd2 ∈ R.

For each j = 0, . . . , d2 evaluate

f(α1, pj) = C1(pj)π1(α1) + · · ·+ Cs(pj)πs(α1)
· · · · · ·

f(αs, pj) = C1(pj)π1(αs) + · · ·+ Cs(pj)πs(αs)

and determine the values of Ci(pj) by solving a linear system.

For each i = 1, . . . , s apply univariate lifting to Ci(p0), . . . , Ci(pd2) to find Ci(x2).

The final lifted result is then
∑s

i=1 Ci(x2)πi.

Case Study 1: GCD in Z[x]

It is too easy to take GCD computation for granted. We all know Euclid’s algorithm. Maybe you were mildly
surprised when you first heard that it could be applied to polynomials too. Now, because you know in principle
how to compute polynomial GCDs, you expect the computer to calculate GCDs quickly. Thanks to modular
methods your expectations can be fulfilled.

Using modular methods to compute the GCD of f, g ∈ Z[x] is easy provided we are careful. There are three
points to note:

1. we must avoid primes which divide LC(f) or LC(g);

2. Fp is a field, so a GCD in Fp[x] is defined only up to multiplication by a unit;

3. applying Euclid’s algorithm in Fp[x] may produce an answer of degree strictly greater than that of the
true GCD in Z[x].

It is not immediately clear how we can overcome these difficulties. We know that there are only finitely many
bad primes, i.e. ones which yield a modular GCD of too high a degree. But it is not clear how to tell if a prime
is bad. Even if the prime is good, the GCD computed is only an unknown constant multiple of the faithful
modular image.

Since we cannot use modular methods to compute the GCD of integers, we have to determine the purely integer
factor of the GCD in a separate way. So before applying the algorithm we precondition f and g by removing

5

their contents; the GCD of these contents will be the integer factor of the answer — here we are using Gauss’s
lemma implicitly. To find the polynomial part of the result we intend using Chinese remaindering: we shall
compute the GCD modulo various primes p1, p2, . . . , pk, and combine them to obtain a GCD modulo

∏
pi.

Chinese remaindering

Recall that the Chinese remainder theorem says that Z/m1 × Z/m2 ≡ Z/(m1m2) provided m1 and m2 are
coprime; the theorem trivially generalizes to a product Z/m1 × · · · × Z/mk. By Chinese remaindering we
mean the computation of the element of Z/(m1 · · ·mk) corresponding to given elements of Z/m1, . . . ,Z/mk.
The calculations for performing Chinese remaindering are quite simple. The simplest is a sequential algorithm;
it is often a good choice. There are more advanced “parallel” algorithms which are faster if integer multiplication
and GCD are fast. We can be clever if there are many values to be Chinese remaindered from the same set of
quotient rings.

Chinese remaindering extends in a natural way to polynomials with integer coefficients, or to matrices with
integer entries. Chinese remaindering lends itself naturally to highly parallel processing.

It is also possible to perform fault-tolerant Chinese remaindering: we reconstruct the correct answer even when
some of the modular images are wrong. For this to work correctly the redundancy must exceed twice the
maximum possible error.

We note that the classical way of interpolating a univariate polynomial is merely one way of effecting Chinese
remaindering in a univariate polynomial ring.

The algorithm

The algorithm accepts as input two polynomials f, g ∈ Z[x], ideally they should be primitive. The result is the
primitive part of their GCD.

The algorithm chooses a succession of primes p1, p2, . . ., avoiding any which divide LC(f) or LC(g). It applies
Euclid’s algorithm to f and g modulo each prime. It discards all primes where the GCD has non-minimal
degree as they are surely bad; after trying enough primes, all surviving primes must be good. To deal with
the unknown factors one technique is to impose a suitable leading coefficient C on the GCD: we choose C =
GCD(LC(f),LC(g)) which must be a multiple of the true leading coefficient of GCD(f, g). The algorithm forces
each modular gcd to have leading coefficient equivalent to C; so we know it is a faithful image of our chosen
multiple of GCD(f, g), and can now apply Chinese remaindering directly.

Finally, the resulting polynomial is made primitive — forcing the leading coefficient may have introduced some
artifical content.

The only remaining issue is deciding how many different primes to use so that reconstruction can succeed. This
is dictated by the size of the largest coefficient which could possibly appear in the GCD. There are formulas for
bounding the largest coefficient, though they often seem rather too generous. Note that there are cases where
the GCD has coefficients larger than any coefficient in the input polynomials.

Rather than using loose bounds, we might prefer a probabilistic strategy: we keep adding primes until Chinese
remaindering gives the same polynomial twice in succession. That polynomial is probably the right answer, but
we cannot simply return it because it might be wrong. If the answer is right, it will divide both f and g; if it
is wrong, it cannot divide both f and g because either its degree is too high or it has a wrong coefficient — it
cannot have degree less than that of the true GCD.

There are other modular methods for computing polynomial GCDs. Hensel lifting works well once a GCD free
basis has been found. The polynomial GCD can also be found by computing a single (large) integer GCD (see
publications about HeuGCD and GCDHeu).

6

Case Study 2: Factorization in Z[x]

Having seen how well Chinese remaindering works for calculating GCDs, we are tempted to try the same
approach for factorization. Very quickly we discover that it is not so simple: good primes can be hard to find,
and it is not always obvious which factors to combine using Chinese remaindering. These difficulties turn out
to be essentially insurmountable, and a different approach is needed.

Bad primes are a fact of life in factorization: indeed for some polynomials, such as x4 + 1, there are no good
primes at all. Even worse: for the Swinnerton-Dyer polynomials all primes are extremely bad — the polynomials
are irreducible but split into factors of degree 1 or 2 modulo every prime. Nonetheless, we can be certain of one
fact: the modular factorization is a refinement of the true factorization.

A viable alternative to Chinese remaindering was found by Zassenhaus: Hensel lifting, an effective application
of Hensel’s Lemma. Instead of using many different primes, we use just one. Hensel lifting obtains a factorization
modulo pk starting from one modulo p. We can think of it as an alternative to Chinese remaindering.

Analogously to the case of computing GCDs, the modular factors are defined only up to multiplication by a
unit, and this ambiguity may be eliminated by imposing a leading coefficient.

If the prime we chose is good then reconstructing the true factors is a trivial matter. If not, we must find out
how to combine the modular factors appropriately. One way is just to try all possible combinations, and check
divisibility by each one: if the candidate divides the original polynomial then it is a true factor. A faster, more
sophisticated technique was found recently by van Hoeij, and works via LLL lattice basis reduction.

The question of how much Hensel lifting to perform is answered by estimating how large the coefficients of
factors could be. Several suitable bounds are known; they are all invariably quite loose for “normal” polynomials.
Nonetheless, there do exist some rare polynomials in Z[x] all of whose irreducible factors have coefficients bigger
than the biggest coefficient of the original polynomial.

Hensel lifting, when applicable, tends to be more efficient than Chinese remaindering, but appears to be inher-
ently sequential.

p-adic numbers and Hensel lifting

In contrast to Chinese remaindering, Hensel lifting uses only a single prime. Hensel lifting is not as widely
applicable as Chinese remaindering, but it does work very well for polynomial factorizations, and for solving
linear systems.

We are all familiar with the usual norm on the integers: the absolute value. It turns out that it is not the only
possible norm: for each prime p there is the associated p-adic norm, written | · |p. We can define it simply:
|n|p = p−k where pk is the highest power of p dividing n; it is related to the concept of p-adic valuation, which
we shall not need.

We use the p-adic norm to define the ring of p-adic integers Zp. Analogously to the construction of the reals R
by completion of Q with respect to the usual norm, we build Zp as the completion of Z with respect to | · |p.
We can think of the elements of Zp as being “power series” in p with coefficients in Z/pZ: a typical element
looks like

α = α0p
0 + α1p

1 + α2p
2 + · · · αi ∈ {0, 1, . . . , p− 1}

One pretty result about p-adic numbers is Hensel’s Lemma which shows how a solution modulo p can be lifted
to a p-adic solution. We illustrate it by showing Hensel lifting of a polynomial factorization. We start with a
factorization f ≡ gh (mod p) where g and h are coprime (modulo p); for convenience we suppose that f, g, h
are monic. Hensel lifting is a process which then determines a refined factorization f ≡ gkhk (mod pk) where
gk ≡ g (mod p) and hk ≡ h (mod p), and gk and hk are monic.

The first step is to find the polynomials g2 = g + pδg and h2 = h + pδh; substituting and expanding we get

f ≡ g2h2 ≡ gh + p(δgh + δhg) (mod p2)

Since the p0 parts match in the factorization, we need only choose δg and δh to make the p1 parts match. Now,
by Bezout’s Theorem, the coprimality of g and h implies the existence of polynomials g∗ and h∗ such that

7

gg∗ + hh∗ ≡ 1 (mod p). We can compute g∗ and h∗ using the extended euclidean algorithm. Multiplying
Bezout’s equation by (f−gh)/p we deduce the existence of polynomials δg and δh such that δgh+δhg ≡ (f−gh)/p
(mod p). In fact there are many possble choices for δg and δh: we may add a multiple of g to δg and subtract
the same multiple of h from δh. To preserve monicness, we choose the unique δg satisfying deg(δg) < deg(g);
this implies that also deg(δh) < deg(h). These conditions fix δg and δh uniquely, and we have found g2 and h2.

In a similar way we obtain g3 and h3 starting from g2 and h2; eventually we reach gk and hk. This method is
known as linear lifting. There is a more involved variant which goes straight from g2, h2 to g4, h4 to g8, h8,
and so on: it is called quadratic lifting, and is usually faster than linear lifting to the same p-adic precision.

8

