SIMPLICIAL COMPLEXES, GENERIC INITIAL IDEALS AND
COMBINATORICS

REKHA THOMAS

ABSTRACT. The results that will be presented in this talk were motivated
by the technique of algebraic shifting, an operation on simplicial complexes
introduced by Gil Kalai that converts a given simplicial complex into a combi-
natorially simpler (shifted) complex while preserving several invariants. There
are two forms of shifting: symmetric shifting in the polynomial ring and ex-
terior shifting in the exterior algebra. Both involve computing the reverse lex
generic initial ideal (gin) of the Stanley-Reisner ideal of the input complex.

We introduce a new set of invariants for a homogeneous polynomial ideal
called its symmetric iterated Betti numbers. In the context of shifting, these
numbers have a combinatorial interpretation and contain among them the
extremal Betti numbers in a minimal free resolution of the Stanley-Reisner
ideal of the input complex.

This is joint work with Eric Babson and Isabella Novik at the University of
Washington in Seattle. These notes are a shortened version of the paper [6].

1. INTRODUCTION AND THE MAIN RESULTS

The goal of this talk is to define and interpret a set of invariants of a homogeneous
ideal in a polynomial ring, called the symmetric iterated Betti numbers of the ideal.
These invariants were introduced in [6]. Large parts of these notes are taken directly
from this paper which we refer to for details and complete proofs.
The notion of symmetric iterated Betti numbers for a polynomial ideal was
motivated by algebraic shifting, a technique introduced by Gil Kalai in the eighties
to study simplicial complexes. Let I' be a simplicial complex on the vertex set
[n] :={1,...,n}. In [5] and [15], Kalai introduced two versions of algebraic shifting
which given I', provides new simplicial complexes with the same vertex set. We
denote these versions by A(T) for the symmetric shifting of T' (see Definition 2.1)
and by A¢(T") for the exterior shifting of T' (see Definition 2.2). For both of these
operations it is known that:
(P1) AX(T) is shifted, that is, for every F € A)(T), if j < i € F, then
(F\{i}) U {5} € AL(D).

(P2) If T is shifted, then A()(T) =T.

(P3) T and A(®)(T") have the same f-vector, that is, they have the same number
of i-dimensional faces for every i.

(P4) If I' is a subcomplex of T', then A()(T') c Ale)(T).

Both versions were studied extensively from the algebraic point of view in a series
of recent papers by Aramova, Herzog, Hibi and others (surveyed in [12]).

Consider the polynomial ring S = K[y1, - . . , yn] where k is a field of characteristic
zero. Let N denote the set of non-negative integers. If A C [n] then write y4 =
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[I.c4 Ya- Denote by N the monomials of S by identifying a function f : [n] —

N in NI?l with the monomial Hze[n yz 7@ and consider N as a multiplicative

monoid. Thus {0,1}[" = y2[ " is the set of squarefree monomials. If T C 2
is a simplicial complex then the Stanley-Reisner ideal of I [18, Def. II.1.1] is the
squarefree monomial ideal

[n]_
=" Tcs.

In other words, It is generated by all squarefree monomials in S whose supports
are the minimal non-faces of T'.

The (bi-graded) Betti numbers of a homogeneous ideal I C S are the invariants
Bi,;(I) that appear in the minimal free resolution of I as an S-module.
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Here S(— j) denotes S with grading shifted by j. We say that §; 4, (I), is extremal
if 0 75 ,Bz',i—i-j (I) = Zi'Zi,j'Zj ﬂi’,i’—i—j’ (I) (ThlS is equivalent to having 0 ;é ﬂi,i-l‘]' (I)
and 0 = By y4j (I) for every i’ > i and j' > j, (¢',5') # (i,5). ) This terminol-
ogy comes from the Betti diagram of I output by the computer algebra program
Macaulay 2 [11]. The extremal Betti numbers are the entries in the south-east
corners of this Betti diagram.

Since A(®)(T) are shifted complexes, their combinatorial structures are simpler
than that of I'. Nonetheless, A(¢) preserve many combinatorial and topological
properties.

1. A(®) preserve topological Betti numbers: (see [5, Thm. 3.1], [1, Prop. 8.3]
for exterior shifting and [12, Cor. 8.25] for symmetric shifting). Moreover,
exterior algebraic shifting preserves the exterior iterated Betti numbers of
a simplicial complex. (There are two versions of exterior iterated Betti
numbers — one due to Kalai [16, Cor. 3.4] and another due to Duval and
Rose [8]. Both sets of numbers are preserved under exterior shifting.)

2. A® preserve Cohen-Macaulayness: a simplicial complex I is Cohen-Macaulay
if and only if A(®)(T') is Cohen-Macaulay, which happens if and only if
A)(T) is pure (see [16, Thm. 5.3], [1, Prop. 8.4] for exterior shifting and
[15, Thm. 6.4] for symmetric shifting).

3. Al®) preserve extremal Betti numbers: f; ;1 ;(Ir) is an extremal Betti num-
ber of Ir if and only if B; iy ;(Iac(r)) is extremal for Ix () (), in which case
ﬂi,i+j (II‘) = Bi,i+]‘ (IA(e)(I“)) (see [3] for symmetric Shlftlng and [1, Thm. 97]
for both versions.)

Property 3 is a far-reaching generalization of Property 2, while Property 1 played
a crucial role in Kalai’s proof of Property 2 for exterior shifting. This suggests that
there might be a connection between the iterated Betti numbers of a simplicial
complex I' on the one hand and the extremal Betti numbers of the ideal I on the
other. This is one of the connections we will establish.

Recall that if M is an S-module, N is a submodule and I is an ideal in S then
(N :I®)pr = {m € M| for some r € N,I"m C N} and if I = (f) it is typical to
write (N : (f)*°) = (N : f*°). For an S-module M, the 0-th local cohomology of
M with respect to the irrelevant ideal m = S, = (y1,...,yn) is defined as

H(M)={me M :m"*-m =0 for some k} = (0 : m™) .
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In particular H°(M) is graded when M is graded.

Consider the action of GL(S;) on S and choose u € GL(S;) to be generic.
Denote by m = (S1) the irrelevant ideal of S. If I is a homogeneous ideal in S then
write Jo(I) = wl and J;(I) = y;S + (Ji—1(I) : m*>). We now come to the central
definition.

Definition 1.1. The symmetric iterated Betti numbers of a homogeneous ideal
in S are

b - (I) ;= dim H°(S/J;(I)), for 0 <i,r <m,

where H°(—), stands for the r-th component of the 0-th local cohomology with
respect to the irrelevant ideal m.

If T is a simplicial complex with vertex set [n], define the symmetric iterated
Betti numbers of T' to be b; »(T') := b; »(I1), 0 < 4,7 < n.

Our first result gives a combinatorial interpretation of the symmetric iterated
Betti numbers of a simplicial complex I'" and shows that they are invariant under
symmetric algebraic shifting. Let max(T") denote the set of facets (maximal faces)
of I'. Write dim(I") = max{|F|—1: F eT}.

Theorem 4.1. Let T' be a simplicial complex. Then

bin() = {F € max(A(M)) : |F|=4,[i—r]CF, i—r+1¢F} ifr<i
SIS0 otherwise.

In particular, since A(A(T)) = A(T), it follows that the symmetric iterated Betti
numbers of ' are invariant under symmetric shifting.

Theorem 4.1 implies that b; »(I') = 0 unless 0 < r < ¢ < dim(I")+ 1. The exterior
iterated Betti numbers of T, b¢ .(T'), defined by Duval and Rose have precisely the
same combinatorial formula (up to a slight change in indices), except that in their
definition, one replaces A(T") by A¢(T") [8, Thm. 4.1].

The extremal Betti numbers of an ideal I = I are the extremal iterated Betti
numbers (symmetric or exterior) of the simplicial complex I' in the following sense.

Theorem 4.5. Let T’ be a simplicial complex. The extremal Betti numbers of It

form a subset of the symmetric as well as of the exterior iterated Betti numbers of

['. More precisely, B;_1,i+;(Ir) is an extremal Betti number of It if and only if
b(e)

n—j',i

(T)=0 Y(i',§") # (i,5), @' >4, /' > j, and b, (T) #0.
In such a case Bj—1,i+;(Ir) = bn—ji(T) = by, _; ;(T).

Let Gin (I) denote the reverse lexicographic generic initial ideal of a homoge-
neous ideal I in S with variables ordered as y, > yn—1 > --- > y1. It follows
from [3, Cor. 1.7] that the symmetric iterated Betti numbers of I coincide with
those of Gin (I). We provide an alternate proof of this fact in [6]. Our third result
(Theorem 4.13) interprets the symmetric iterated Betti numbers b; ,.(I) in terms of
the associated primes of Gin (I).

These notes are organized as follows. In Section 2 we recall the basics of algebraic
shifting. Section 3 defines and interprets certain monomial sets that are at the root
of all our proofs. In Section 4 we explain (without complete proofs) the theorems
stated above.
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2. ALGEBRAIC SHIFTING

In this section we recall the basics of symmetric and exterior algebraic shifting.
For further details and open questions see the survey articles by Herzog [12] and
Kalai [17].

Let N” denote the set of all finite degree monomials in the variables y; with
i € 0 and NJ denote the set of elements of degree r in N’. In particular, if
[n] = [1,n] = {1,...,n} then NI"l is the set of all monomials in S and {0,1}7 is
the set of all square free finite degree monomials in N”. In this paper we fix the
reverse lexicographic order = on N* with y; = y;_; for all i € Z extending the
partial ordering by degree. We also define the square free map ® : N4 — {0,1}% to
be the unique degree and order preserving bijection for which ®(yg') = []_,,<;<q ¥i-
Thus for example ®(y4y3yr) = Yoysyaysyr-

For each homogeneous ideal I C S there exists a Zariski open set U(I) C GL(S;)
such that the ideal In, (ul), (the initial ideal of ul with respect to the monomial
order > on S), is independent of the choice of u € U(I). The ideal In, (ul) is
called the generic initial ideal of I with respect to > and is denoted by Gin (I) =
Gin (I) (see [9, Chapter 15]). If I is a homogeneous ideal in S then one way to
explicitly and uniformly construct an element o € U([I) is to consider the extension
K = k({ai,;}i jen))/k and then for any ideal I in S the element

n
o: S5k =5S®«K —= Sk givenby ay; = Z Qi,5Yj
j=1

is generic for KI as an ideal of Sk.
For a homogeneous ideal I in S and a generic linear map u € U(I) define

B(I) = {m € N : mis not in the linear span of {n|m > n} Uul}.

Note that B(I) is a basis of the vector space My(I) = S/ul and hence B(I) =
N™ — Gin (I), the set of standard monomials of Gin (I).

Definition 2.1. The symmetric algebraic shifting of a simplicial complex T’ C 2!
is A(T) where g2 = &(B(Ir)) N NILl C {0, 1},

Note that this means that Iar) = (®(NI"l — B(Ir))).

The fact that A(T) is a simplicial complex satisfying conditions (P1)—(P4) was
proved in [15, Thm. 6.4], [2] by using certain properties of B(I). We list some of
them below.

(B1) B(I) is a basis of S/ul, as well as of S/Gin (I).

(B2) B(I) is an order ideal — if m € B(I) and m'|m, then m' € B(I).

(B3) B(I) is shifted — if j < ¢ and y;m € B(I) then y;m € B(I).

(B1) was discussed above while (B2) follows from the fact that Gin (I) is an ideal.
(B3) is a consequence of the fact that generic initial ideals are Borel fixed [9,
Theorem 15.20]. In characteristic 0, this is equivalent to Gin (I) being strongly
stable [9, Theorem 15.23], which means that if j < ¢ and y;m € Gin (I) then y;m €
Gin (). Tt turns out that if M is strongly stable then ®M has the same Hilbert
function as M. In fact the two ideals have the same Betti diagrams. However, if
M is not strongly stable, ® need not preserve the Hilbert function.
In the case when I = I, B(Ir) has another fundamental property:

(B4) If m € B(Ir) NNF™ and r > k then mNt¥} C B(Ir) as well.
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This is due to Kalai [15, Lemma 6.3] and implies that y1, ..., yn is an almost regular
Mo (Ir)-sequence (a notion introduced by Aramova and Herzog [1]; it played a
crucial role in their proof that extremal Betti numbers are preserved by algebraic
shifting).

Let E = A(K[y1,---,yn]1) = A Si be the exterior algebra over the n-dimensional
vector space S1. A monomialin E is an expression of the form m = y;, Ayi, A+ Ay, ,
where 1 < i1 < i < ... < i < n; the set {i1,42,...,ir} is called the support of
m, and is denoted by supp (m). The exterior Stanley-Reisner ideal of a simplicial
complex T on [n] is

Jr :={m € E : m is a monomial, supp (m) ¢ I').

Definition 2.2. The exterior algebraic shifting of T', A¢(T"), is the simplicial com-
plex defined by Ja«(r) := Gin (Jr), where Gin (Jr) is the generic initial ideal of Jr
with respect to the reverse lexicographic order with y, > yp—1 > -+ > y1.

3. SPECIAL MONOMIAL SUBSETS

In this section we identify and interpret certain subsets of monomials in the basis
B(I) of My(I) that are at the root of the proofs of our main theorems.

Definition 3.1. Let I be a homogeneous ideal in S. For i € [0,n] define
A(I) = { meN#+L o N C B(I), mNit+) ¢ B(I) }
Ai(I) = A;(I)NNY.

Several remarks are in order. Since B(I) is shifted (B3), mN{it C B(I) iff
mN# C B(I). Since B(Ir) satisfies (B4),

(1) Ai,T(IF) =0 ifr>i and hence Az(IF) = Ui:oAi,r(IF)-
Also if m € N"™ then m € B(Ir) iff mN"! C B(Ir). Hence
2)  Ai(r) = {m € Nitbrl . yi=" o € B(Ip), yipit m ¢ B(Ir)} :

In [19], Sturmfels, Trung and Vogel introduced a decomposition of the standard
monomials of an arbitrary monomial ideal M, called its standard pair decomposi-
tion, in order to study the multiplicities of associated primes and degrees of M.
Theorem 4.13 interprets these quantities for the monomial ideals I, Ia(r), and
Gin (1) in terms of symmetric iterated Betti numbers of the gin. This in turn relies
on the fact that the sets of monomials A;(I) defined above index the standard pairs
of Gin (). For a monomial m € NZ| let supp (m) := {i : y;/m} C Z be called the
support of m. Thus supp : {0,1}? — 27 is a bijection.

Definition 3.2. [19] Let M = (M N N"l) C S be a monomial ideal. A standard
monomial of M is an element of N/ — M. An admissible pair of M is a subset
mN C N — M with m € N™~? or equivalently if we take Z? to be Laurent
monomials then an admissible pair is a subset mZ? NN with mZ°N M = §. A
standard pair of M is a(n inclusion) maximal admissible pair.

Our starting point is the following relationship between the sets defined above
and the standard pairs of Gin (I). For the proof of this lemma as well as all other
proofs omitted from these notes, please see [6].
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Lemma 3.3. If I C S is an ideal then the standard pairs of Gin (I) are {aNl
a € A;i(I)}. (Here[0]=10.)

Corollary 3.4. If mN is a standard pair of Gin (It) then the degree of m is at
most 1.

The standard pairs of monomial ideals of moderate size can be computed using
the computer algebra package Macaulay 2 [11] (see the chapter Monomial Ideals
in [10] for details). This gives a method for computing the sets A;(I) for small
examples — see Example 3.9 below.

Example 3.5. Consider the ideal I = (2® —52%y2, 2%yx3 —32y25,9%22) C k[z,y, 2].
Under the reverse lexicographic order > with z > y > =z,

3,2,3

Gin (I) = (z*,4°2%,4° 2%, wy*2?, 2%y 2%, 27y 2°).

The standard pairs of Gin (I) are:
o NtL2H oNiL2H
o 22N g p2NOY g 2,2N0) 43 ,2N{1) 3NTLY
o 122N NP 2 28N0 a2 28 ND 222 20ND oy 2PN 2y 2PN
Py N oty N
Figure 1 shows the decomposition of the standard monomials of Gin (I) given by

its standard pairs. The generators of Gin (I) are the labeled black dots and the
standard pair y™N” is depicted by the cone m + RZ,.

In the case when I = Ir there is another interpretation of the monomials in
A;(Ir) that relates them to the shifted complex A(T'), and is useful for the proofs
of Theorems 4.1 and 4.13.

Lemma 3.6. There is a bijection between the sets

A;ir(Ir) and {F e max(A(D)):|F|=1¢[i—-r]CF,i—-r+1¢F}
given by ® with A; .(Ir) > m + [i — 7] Usupp (®(m)) = supp (®(my:™")).
Corollary 3.7. The standard pairs of Gin (Ir) are in bijection with the facets of
A(T): mN s a standard pair of Gin (Ir) if and only if [i — 7] Usupp (®(m)) is a
facet of A(T) of size i.
Lemma 3.6 along with the fact that b; .(I) = |A;(I)| for all i,r € [0,n], proves
Theorem 4.1. (Hence, in particular, it follows from Theorem 4.1 that A;(Ir) = @

for all 4 > dim(T") + 1.) Thus the sets A;,(Ir) and their cardinalities b; ,(I") carry
important information about I', and we record them in the following triangles.

Definition 3.8. The b-triangle and monomial b-triangle of a simplicial complex T’
are the lower triangular matrices whose respective (i,7)-th entries are b; (I") and
A;r(Ir) for 0 < i <r <dim(T) + 1.

Example 3.9. Let I be the simplicial complex whose facets are

max(T") = {{1,2,4},{1,2,6},{1,3,4},{1,3,7},{1,5,6},{1,5,7},{2,3, 5},
{2,3,7},{2,4,5},{2,6,7},{3,4,6},{3,5,6},{4,5,7},{4,6,7}}.
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FIGURE 1. The standard pair decomposition of Gin (I) where for
instance, the standard pairs zN{1:2} | 22N{1} and y*22N? are shown
separately in (a), (b) and (c) respectively.

»
w

3 5 7

FI1GURE 2. The simplicial complex I' in Example 3.9. Here parallel
boundary regions are identified.

Then the Stanley-Reisner ideal of T in the ring S := k[a, b, ¢,d, ¢, f, g] is:

Ir ={efg,cfg,afg,ceg,beg,cdg, bdg, adg, abg, de f, be f, bdf , adf , bef,
acf, cde, ade, ace, abe, bed, abe).
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Under the reverse lexicographic order > with g = f = --- = b > a,

(9f%, f2, fPe,g*f. gfe, fe*,gfd, f*d, fed, g’e, ge*, €°,
ged,e’d, fd’, g°, g°d, gd’  ed®, g%c, g fc,d*).

Gin(Iy) =

Applying the map @ to the generators of Gin (It) we get

Iary =

which shows that the shifted complex A(T") has facets:

The one skeleton of A(T") is (like that of I') the complete graph on it’s 7 vertices. The
triangles are obtained by coning 1 with all edges involving the vertices 2, 3,4,5,6
and 7 except for {5,7} and {6,7} and adding the triangle {2,3,4}. Thus all the

max(A(T))

(gea, g fa,ech, fcb, gcb, edb, fdb, gdb, feb, geb, gfb, edc,
fdc, gde, fec, gec, g fc, fed, ged, gfd, g fe, dcbay),

{{1,2,3},{1,2,4},{1,2,5},{1,2,6},{1,2,7},

{1,3,4},4{1,3,5},{1,3,6},{1,3,7},{1,4, 5},
{1,4,6},{1,4,7},{1,5,6},{2,3,4},{5,7},{6,7}}.

triangles and the edges {5,7} and {6, 7} are facets.

We compute the b-triangle and the monomial b-triangle of T" by first computing

the standard pairs of Gin (Ir) using Macaulay 2.

[ b-triangle of T

| monomial b-triangle of T

01 2 3 0 1 2 3
010 00
110 0 110 0
2(0 0 2 200 0 {9%,9f}
3|1 4 8 1 3| {1} {9, f.e,d} {ge,qgd, f% fe, fd,e? ed,d*} {d*}

The standard pairs of Ir, Gin (Ir) and I, A(r) are shown in the following table.
Columns 2,3, and 4 illustrate Lemma 3.6 and Corollary 3.7.

StdPairs(Ir) | StdPairs(Gin (It)) | ®(m) StdPairs(Ia(r))
form: N” form: mN! — supp (®(m)) | form: N°
N{4.6,7F N(L2.3] 150 N{L2.3]
N{2,6,7} gN{1,2,3} g_>{7} N{1,2,7}
N{4,5,7} geN{1,2,3} gd—>{7,4} N{1’4’7}
N{1,5,7} ng{1,2,3} gc — {7’3} N{1’3’7}
N{2,3,7} fN{1,2,3} f—){ﬁ} N{l,z,ﬁ}
N{L3,7} f2N{L2:3} fe — {6,5} NiL.5,6}
N{3,5,6} feN{1,2,3} fd—>{6,4} N{1’4’6}
N{1,5,6} de{l,Q,S} fc—>{6,3} N{1’3’6}
N{3:4,6} eNf1,2,3} e — {5} N{L:2,5}
N{I,Z,G} €2N{1’2’3} ed — {5’4} N{1,4,5}
N{2.4.5} edN{1:2:3} ec = {53} N{t,3.5}
N{2,3,5} dN{1,2,3} d—){4} N{1,2,4}
N{1,3,4} d2N{1,2,3} dC—){4,3} N{1,3,4}
N{t,2,4} d®N{1:2:3} deb — {4,32} | N{23:4}
g*NU 2T gf = {76} |NOT
gfNiL:2} ge — {7,5} Ni{5:7}
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4. THE MAIN THEOREMS

Our first theorem provides a simple combinatorial formula for the symmetric
iterated Betti numbers of a simplicial complex.

Theorem 4.1. For a simplicial complex T’

ooy [ {F emax(A@): [Fl=i[i-r|CFi-r+1¢ F)| ir<i
(L) = 0 otherwise

The symmetric iterated Betti numbers b; (I") were defined as the dimensions
of the vector spaces H°(M;(Ir)),, where for a homogeneous ideal I in S and a
generic linear map u € U(I), Mo(I) = S/ul and M;(I) = M;_1(I)/(yiM;—1(I) +
HO(M;_1(I))) for 1 < i < n. Thus at step i we “peel off” the i-th variable. This is
similar to the “deconing” of the shifted complex A(T') used in the definition of the
exterior iterated Betti numbers of I' by Duval and Rose [8].

In view of Lemma, 3.6, it suffices to prove the following lemma in order to prove
Theorem 4.1. The proof is rather technical and can be found in [6].

Lemma 4.2. |4;,(I)| = dim H°(M;(I)), for all i,r > 0.

Let T' be a simplicial complex on the vertex set [n]. The Alezander dual of I is
the simplicial complex

" ={FCn]:[n]\F ¢TI}

The next two results (both due to Bayer, Charalambous and Popescu [3], see
[1] also for the second theorem) provide connections between the extremal Betti
numbers of the Stanley-Reisner ideals of I' and I'*, and the shifted complex A(T).

Theorem 4.3. Let I' be a simplicial complex and T'* be its Alexander dual. The
Stanley-Reisner ideals It and Ir« have the same extremal Betti numbers. More
precisely, B;iyj(Ir+) is extremal if and only if Bj—1,:+;(Ir) is extremal. Also, in
such a case B ivj(Ir+) = Bj-1,i+;Ir)-

Theorem 4.4. Extremal Betti numbers are preserved by algebraic shifting: for a
simplicial complex T, B; ;1 ;(Iv) is extremal if and only if B; i1 ;(Ia(r)) is extremal.
Moreover, in such a case By ;(Ir) = Biivi(Iar))-

Our second theorem is the following.

Theorem 4.5. The extremal Betti numbers of Ir are contained among the sym-
metric iterated Betti numbers of T'. They are precisely the extremal entries in the
b-triangle of T': f;_1,4;(Ir) is an extremal Betti number of It if and only if

bn—j’,z” (F) =0 V(ilhj,) 7é (ZJJ)J 1:, Z ia jl Z j; and bn—],t(r) 7é 0.
Moreover, in this case, Bj—1,i+;(Ir) = bp—j,i(T).

Example 3.9 continued: The minimal free resolution and Betti diagram of It
(computed by Macaulay 2) are given below. Note that the entries in the southeast
corners of the Betti diagram of Ir (the extremal Betti numbers of Ir) are precisely
the entries in the north-east corners of the b-triangle of I' from Section 3.

0582 58P 56842 581 5,62 59590



10 REKHA THOMAS

total: 1 21 49 42 15 2

0: 1

1: .. . . ..
2: .21 49 42 14 2
3: .. ; . 1

The proof of Theorem 4.5 relies on the following lemma, which is a consequence
of [13, Thm. 2.1(b)] (see also [14, Prop. 12]) and [7, Cor. 6.2]. A different proof can
be found in [6].

Lemma 4.6. The symmetric iterated Betti numbers of I are related to the graded
Betti numbers of the Stanley-Reisner ideal Inr+y as follows:

Biiri(Iaqs) =Y (n - : - ]> bn—j,n—r—j(T).
T
It is well known and is easy to prove that A(T*) = A(T)*.
Proof of Theorem 4.5: 'The theorem is an easy consequence of Lemma 4.6. Indeed,
since ("7 77) is positive for r <n —i— j and is zero otherwise, it follows from the
lemma that
Bir gy (Ia@ey) =0 iff  by_jin o (T)=0forallr <n—i' —j"
Thus,
Biivi(Ia(r+)) # 0 is extremal <=
Birirtjr (Iar+)) = 0 for all i’ >4, j' > 4, (i,5) # (i',j') =
b g0 (T) = 0 for all i* >, j' > j, (5,5) # (i',5").

Moreover, if this is the case, then all except the first summand in

i n—r—j
Biiri(Iar=)) = <Z> i)+ > ( ; J) bp—jn—r—j(T)
r<n—i—j
vanish, implying that ;i1 ;(Zaw+)) = bn—ji([). The result then follows from
Theorems 4.3 and 4.4. O

Using [1, Cor . 1.2] and certain properties of sets A;(I) one can also prove the
following more general result.

Theorem 4.7. Let I be a homogeneous ideal. The extremal Betti numbers of I form
a subset of the symmetric iterated Betti numbers of I. More precisely, B;-1,i+;(I)
is an extremal Betti number of I if and only if

bnfj’,i’(I) =0 V(ilhjl) 7£ (7’7.7)7 il Z i7 jl 2 j; and bnfj,i(l) 7é 0.
Moreover, in this case, Bj_1,i+;(I) = bp—;i(I).

We now turn to the third theorem. The associated primes of a homogeneous
ideal I C S with a primary decomposition I = @1 N Q2 N --- N Q; are the prime
ideals P; := +/Q;, i = 1,...,t, where /@); denotes the radical of (J;. The set
of associated primes of I, customarily denoted as Ass([), is independent of the
primary decomposition of I. The minimal elements of Ass(I) with respect to
inclusion are called the minimal primes of I. We denote the set of minimal primes
of I as Min (I). Recall that the irreducible (isolated) components of V(I), the
variety of I in k™, are the varieties V(P) for P € Min(I). Let Z; := V(F;) be
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the variety of P; in k™. The finite invariant deg(Z;), called the degree of Z;, is the
cardinality of Z; N L for almost all linear subspaces L of dimension equal to the
codimension of Z;.

Definition 4.8. [4], [19]

(1) If P is a homogeneous prime ideal in S then the multiplicity of P (with
respect to I), denoted as mult ;(P) is the length of the largest ideal of finite
length in the ring Sp/ISp.

(2) The degree of I, deg(I) := }_gim(z:)=dim(r)} Mult 1(F;) deg(Z;).

(3) The geometric degree of I,

geomdeg (I) := z mult ;(P;) deg(Z;).
{P;eMin (1)}
(4) The arithmetic degree of I,
arithdeg (I) := Z mult 7 (P;) deg(Z;).
{P;€Ass(I)}

The invariant mult ;(P) > 0 if and only if P € Ass(I). Our main goal in this
section is to prove Theorem 4.13. We first specialize Definition 4.8 to monomial
ideals. If M is a monomial ideal, then every associated prime of M is of the form
P, :=(y; : j & o) for some set ¢ C [n]. Hence V(P,) is the |o|-dimensional
linear subspace spanned by {e; : j € o} and deg(V (P,)) = 1. The three degrees of
M from Definition 4.8 are therefore appropriate sums of multiplicities of ideals in
Ass (M) with respect to M.

For a monomial ideal M the multiplicities of associated primes as well as all the
degrees referred to in Definition 4.8 can be read off from the standard pairs of M
(see Definition 3.2) as shown in the following lemma. The statements in this lemma
are either stated or can be derived easily from the results in [19].

Lemma 4.9. Let M be a monomial ideal. Then,

(1) the set of standard pairs of M is well defined,
(2) *N? is a standard pair of M if and only if P, € Ass(M),
(3) N is a standard pair of M if and only if P, € Min (M),
(4) the dimension of M is the mazimal size of a set o such that xN° is a
standard pair of M,
(5) if P, € Ass(M), then mult ;(P,) is the number of standard pairs of M of
the form *N° and
(6) (a) deg(M) is the number of standard pairs *N° of M such that |o| =
dim(M),
(b) geomdeg(M) is the number of standard pairs *xN° of M such that N°
is a standard pair of M and
(c) arithdeg(M) is the total number of standard pairs of M.

Lemma 3.3 showed that mN? is a standard pair of Gin (I) if and only if o = [4]
and m € A;(I) for some 0 < ¢ < n. Combining this fact with Lemma 4.9 we obtain
the following.

Corollary 4.10. (see also [9, Corollary 15.25])

(i) Pq), d = dim(I), is the unique minimal prime of Gin (I) (if I = Ir then
d=dimI'+ 1), and
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(ii) all embedded primes of Gin (I) are of the form Py for some k < d.

Thus the submonoids in the standard pairs of Gin (I) are initial intervals of
[n] while the cosets can be complicated. On the other hand, for the square free
monomial ideals It and Iaz(r), the cosets of the standard pairs are trivial and the
submonoids determine the ideals (cf. Example 3.9).

Corollary 4.11. If T is a simplicial complex then Iy = ﬂaEmax(F) P, is the irre-
dundant prime decomposition of Ir. In particular, I+ has no embedded primes and
its standard pairs are {N° : o € max(T")}.

By Corollary 3.7, mN[ is a standard pair of Gin (It) if and only if [i — r] U
supp (®(m)) is a facet of A(T') of size i. Combining this fact with Corollary 4.11
we get the following bijection as well.

Corollary 4.12. There is a bijection between the standard pairs of Gin (Ir) and
those of In(r) given by: mN is a standard pair of Gin (It) with deg(m) = r if and
only if Nli=rloSUPP (2(m) s ¢ standard pair of Iary.

Theorem 4.13 is now a corollary of the results stated thus far.

Theorem 4.13. The iterated Betti numbers of a homogeneous ideal I are related
to the ideal Gin (I). Those of an ideal It are related to the ideals Gin (Ir), Ia(r),
and the shifted complex A(T). The relationships are as follows.

(1) The multiplicity of Py with respect to Gin (I) is
mult ;35 ( I) Z bi,r(
If I =1Ir then
mult Gip (7 (B Zb, (D) = {F € max(A(T)) : |F| =}

(2) The degree, geometric degree, and arithmetic degree of Gin (Ir) and Ia()
have the following interpretations:

(7) deg(Gin (I7)) = geomdeg (Gin (Ir)) Z ba,r(Ir)

(@) =deg(Iaw)) = {F € max(A(D)) : |F| =d}|;

(i4) arithdeg (Gin (Ir)) Zb, +(Ir)

(i3") = arithdeg (Ia(r)) = |max(A(F))|

Equations (i) and (ii) also hold for arbitrary homogeneous ideals I in S.
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