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A Linear Diophantine System is a linear system Ax ≥ b such that A ∈ Zm×n, b ∈ Zm and x ∈ Nn.

Two problems
Counting (determine the number of x ∈ Nn satisfying the system)
Parametrized Counting (determine all x ∈ Nn satisfying the system)

Diophantos

• Solve over N.

•Αριθμητικά (Arithemtica)

• Fermat’s Last Theorem

Example
The 3 × 3 symmetric magic squares
with row and column sum equal to r.
Linear Diophantine system:
a1, . . . , a6, r ≥ 0, a1 + a2 + a3 − r = 0,
a2 + a4 + a5− r = 0, a3 + a5 + a6− r = 0

a1 a2 a3

a2 a4 a5

a3 a5 a6

Partition Analysis was introduced by MacMahon in 1915, who applied it to the solution of combinatorial prob-
lems subject to linear Diophantine systems using Elliott’s algorithm. Towards the end of the last century the
method was revived and with the turn of the century Andrews, Paule and Riese gave a completely algorithmic
version of Partition Analysis powered by Symbolic Computation.
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• Introduce extra variables λi that encode the inequalities.

•Crude Generating Function for the 3× 3 symmetric magic squares:
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Linear Diophantine Systems and Partition Analysis

Generating Function
Given a set S ⊆ Nn we define ΦS(z) to be the formal sum
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n . If ΦS(z) is a

series expansion of a rational function f , then we denote ρS(z) = f (the rational generating function).
Polyhdra and Cones

A polyhedron is the intersection of finitely many halfspaces in Rn. A bounded poly-
hedron is called polytope. If all the vertices of a polytope are lattice points, then it is
called lattice polytope.

A (polyhedral) cone is the intersection of finitely many halfspaces in Rn, whose bound-
ing hyperplanes contain the origin. Equivalently, it is the non-negative span of finitely
many vectors in Rn, which are called the cone generators. Given a cone C ∈ Rn
generated by v1, v2, . . . , vn, we define the fundamental parallelepiped of C to be
Π(C) = {

∑n
i=1 kivi : ki ∈ [0, 1)}. A cone C is called unimodular if Π(C) = {0} and

simplicial if its generators are linearly independent.
If C = CR (v1, v2, . . . , vm; 0) is simplicial, then ρC(z1, . . . , zn) =
ρΠ(C)(z)∏m
i=1(1−zvi). In the picture we see that the fundamental parallelepiped

tiles the cone. This translates to multiplying the generating function of
the fundamental parallelepiped with the geometric series: ΦS(z1, z2) =(
1 + z1z2 + z1z
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Polyhedra, Cones and their Generating Functions

Based on
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, Elliot’s Algorithm computes a Par-

tial Fraction Decomposition
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i
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of the Crude Generating Function for the Homogeneous Problem

such that for each i and for all j the exponents of λ in pij have the same sign. From a geometric viewpoint:

C = co ((1, 0, α), (1, 0,−β))

ρC(z) =
1

(1− z1λα)(1− z2
λβ

)

A = co ((1, 0, α), (1, 1, α− β)) and
B = co ((1, 0,−β), (1, 1, α− β)).

In terms of generating functions,

C = A + B − (A ∩B) is Elliott’s

partial fraction decomposition.

After enough iterations we obtain a de-
composition into cones that lie either in
the non-negative or in the non-positive λ
halfspace. We discard the cones that con-
tain generators in the negative λ halfs-
pace and project with respect to the λ-
coordinate. The generating functions of
the remaining cones sum up to the solu-
tion of αx − βy ≥ 0. Generalizing this
observation we devise a geometric al-
gorithm for the evaluation of Ω≥.

The Geometry of Elliott’s Algorithm

The t-dilation of a set S is defined as tS = {tx : x ∈ S} for t ∈ N. Let
LP (t) = |tP ∩ Zn| be a function counting the lattice points in the t-dilate of P.
Ehrhart proved that if P is a lattice polytope, then LP (t) is a degree d polynomial
in t, which is called the Ehrhart polynomial of P . Dilations of a pentagon.
One can view the problem of computing the Ehrhart polynomial and the Ehrhart series as a linear Diophantine
problem and apply the related algorithmic methods instead of the classic geometric approach of Barvinok.

Ehrhart Theory

Let A ∈ Zm×n and b ∈ Nn. Define the monoid homomorphism f : Nn → Zm such that x 7→ Ax. Let R be
K[z1, z2, . . . , zn] equipped with the degree function induced by the monomial degree deg (zv) = f (v). Define
Rα as the K-vector space K {zv ∈ R : deg (zv) = α} for α ∈ Zm and Bα to be a basis of Rα consisting of
monic monomials. This defines a grading R = ⊕α∈ZmRα. Define Fα(z) =

∑
p∈Bα

p ∈ K Jz1, z2, . . . , znK
and Hb (z; δ) =

∑
α≥bFα(z)δα ∈ K Jz1, z2, . . . , znK Lδ1, δ2, . . . , δmM. Then:

• ΦAx≥b(z) = Hb(z; 1) (substitution meant as taking coefficients)

•H (R; δ) = H0(1; δ), if all Bα involved are finite and H (R; δ) is the classical multigraded Hilbert series.

Graded Rings and Hilbert Series


