Reidemeister-Schreier Procedure using Gröbner Bases Techniques

Yvonne Karoske Fakultät für Informatik und Mathematik, Universität Passau, Germany

Fakultät für Informatik und Mathematik

Basics

Let $\mathbf{F}(\mathbf{X})$ denote the **free group** on $X = \{x_1, \ldots, x_n\}$. A word $\omega = x_1^{\varepsilon_1} \cdots x_n^{\varepsilon_n} \in F(X)$ is called **reduced**, if $x_i \neq x_{i+1}$ or $x_i = x_{i+1}$ and $\varepsilon_i \neq -\varepsilon_{i+1}$.

Let G be a group with a generating set X. Using the universal property of free groups one obtains a homomorphism $\varphi: F(X) \to G$, s.t. $\varphi(x) = x \,\forall x \in X$. By the first isomorphism theorem

 $G \simeq F(X) /_{\ker \varphi}.$

A word $r \in \ker \varphi$ is called a **relator** of G. If $\{r_1, \ldots, r_n\} = R \subseteq \ker \varphi$ with $\ker \varphi = \ll R \gg$ then R is called a set of **defining relators** of G. The set X is called a **generating set** for G. The pair $\langle X \mid R \rangle$ is called a **presentation** of the group G, so

 $G = \langle x_1, \ldots, x_n \mid r_1, \ldots, r_n \rangle.$

Reidemeister Rewriting Process

Let $\omega = x_1^{\varepsilon_1} \cdots x_n^{\varepsilon_n}$ be a word in H. Define a mapping τ in H, s.t. $\tau(\omega) = S_{t_1,x_1}^{\varepsilon_1} \cdots S_{t_n,x_n}^{\varepsilon_n}$, where $\epsilon_i = 1 : t_i$ is the coset representative of the initial segment of ω preceding x_i . $\epsilon_i = -1: t_i$ is the coset representative of the initial segment of ω up to and including x_i^{-1} Example: $\omega = x_1 x_2^{-1} x_3$ then $\tau(\omega) = S_{\overline{1}, x_1} \cdot S_{\overline{1x_1 x_2^{-1}}, x_2}^{-1} \cdot S_{\overline{1x_1 x_2^{-1}}, x_3}^{-1}$ The mapping τ is called the **Reidemeister Rewriting** Process.

Reidemeister-Schreier Procedure / Presenting subgroups

Let $G = \langle X \mid R \rangle$ be a finitely presented group and let $H = \langle S \rangle$ be a subgroup of G, where $S \subseteq X$.

Schreier Transversal

Let G be an arbitrary finitely presented group and H any subgroup of G. A complete set T of right coset representatives $T = \{g_1, \ldots, g_k\}$ for H in G is called a (right) Schreier **Transversal**, if with every word g_i in T its initial segment is also in T, i.e.

$$g_i = x_1^{\varepsilon_1} \cdots x_i^{\varepsilon_i} \in T \Rightarrow 1, x_1^{\varepsilon_1}, \dots, x_{i-1}^{\varepsilon_{i-1}} \in T, \quad i = 1, \dots, k$$

$$Hg_i \neq Hg_j, \quad \forall i \neq j.$$

Computing Schreier Transversal

One can find a Schreier Transversal for H in G by **Coset** Enumeration due to the Todd-Coxeter Procedure (TC). The procedure enumerates all the cosets systematically and terminates (only in case $[G:H] < \infty$) with a multiplication table of the cosets.

Example: $G = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$ and H < G, where $H = \langle [a, b] \rangle.$

Then the TC procedure terminates with the Schreier Transversal $T = \{1, a\}$ and the multiplication table:

	a	a^{-1}	b	b^{-1}
1	a	a	a	a
a	1	1	1	1

Let T be the right Schreier Transversal for H in G. Then one obtains the presentation of H by

 $H = \langle \gamma(t, x) \mid \tau(trt^{-1}), \, \forall t \in T, \, \forall r \in R \rangle.$

Example:

Let $G = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$ and $H = \langle [a, b] \rangle$. Then [G:H] = 2 and $T = \{1, a\}$. So the presentation is given by $\langle x_1, x_2, x_3 \mid x_1 = x_2 x_3 = (x_3)^3 = x_3 x_2 = (x_2 x_1)^2 x_2 \rangle.$

By **Tietze-Transformation** one can simplify the presentation by removing a relation if it can be derived by others and/or removing generators if it is a word of the others. So H can by simplified to $H = \langle x_1 \mid x_1^3 \rangle \simeq \mathbb{Z}/3\mathbb{Z}$.

Research

▶ In [1] the authors presented a coset enumeration procedure based on prefix Gröbner bases in free group rings and transformed this procedure into a Knuth-Bendix type completion procedure directly comparable to TC.

Let M be a monoid, K be a field, X be a finite alphabet. In [3] was given a procedure, using the FGLM algorithm, that finds a reduced Gröbner basis (or the right border basis) for the two sided ideal of the free K-algebra $K\langle X\rangle$ that determines the monoid ring K[M] and therefore gives a presentation for M.

Schreier's Lemma

Let $G = \langle X \rangle$ be a finitely generated group and suppose that H is a subgroup of G. Let T be a right Schreier Transversal for Hin G.

For $q \in G$ let \overline{g} denote the representative in T, i.e. $q \in H\overline{g}$ and set $\gamma(t, x) := tx\overline{tx}^{-1}, t \in T, x \in X$. Then

 $H = \langle \gamma(t, x) \mid \gamma(t, x) \neq 1 \rangle.$

Recent aim of research: giving a full description for the Reidemeister-Schreier procedure using Gröbner bases techniques.

Bibliography

- B. Reinert, K. Madlener, T. Mora, A Note on Nielsen Reduction and Coset Enumeration, Reports On Computer Algebra No. 19 (1998)
- [2] W. Magnus, A. Karras, D. Solitar, **Combinatorial Group Theory:** Presentations of Groups in Terms of Generators and Relations, John Wiley1966.
- [3] M. A. Borges, M. Borges, T. Mora, Computing Gröbner Bases by FGLM Techniques in a Non-commutative Setting, J. Symbolic Computation (2000) 30, 429–449