Kähler Differential algebras for finite point sets in \mathbb{P}^n

Tran Nguyen Khanh Linh

Department of Informatics and Mathematics

University of Passau, Germany

General setting

Throughout this poster, we let K be an algebraically closed field. Let $\mathbb{X} = \{P_1, \dots, P_s\}$ be a set of s distinct K-rational points in \mathbb{P}^n such that $\mathbb{X} \cap \mathbb{Z}^+(X_0) = \emptyset$. Let m_1, \dots, m_s be positive integers and let \mathbb{Y} be a scheme defined by $I_{\mathbb{Y}} = \mathscr{O}_1^{m_1} \cap \cdots \cap \mathscr{O}_s^{m_s}$, where each \mathscr{O}_i is the defining ideal of the point P_i . The scheme \mathbb{Y} , which we denote $\mathbb{Y} = m_1 P_1 + \cdots + m_s P_s$, is usually called a set of fat points in \mathbb{P}^n . We equip $P = K[X_0, ..., X_n]$ with its standard grading deg(X_i) = 1. The quotient ring $R_{\mathbb{Y}} = P/I_{\mathbb{Y}}$ is the homogenous coordinate ring of the scheme \mathbb{Y} .

Definition and Properties

Now we let \mathcal{G} be the graded $R_{\mathbb{Y}}$ -module generated by vectors $(\frac{\partial F}{\partial x_0}, \dots, \frac{\partial F}{\partial x_n})$, where $F \in I_{\mathbb{Y}}$ and x_i is the image of X_i in $R_{\mathbb{Y}}$. Set deg $dx_i = 1$. The exact sequence of graded $R_{\mathbb{Y}}$ -modules

 $0 \longrightarrow \mathcal{G}(-1) \longrightarrow R^{n+1}_{\mathbb{W}}(-1) \longrightarrow \Omega^1_{R_{\mathbb{W}}/K} \longrightarrow 0,$

which is mentioned in a paper "Kähler differentials for points in \mathbb{P}^{n} " of G. Dominicis and M. Kreuzer, induces the sequence of *K*-algebras

$$0 \longrightarrow \mathcal{G} \land \bigwedge R_{\mathbb{Y}}^{n+1} \longrightarrow \bigwedge R_{\mathbb{Y}}^{n+1} \longrightarrow \Omega_{R_{\mathbb{Y}}/K} \longrightarrow 0$$

as well as the sequence of graded $R_{\mathbb{Y}}$ -modules

Let $R = \bigoplus_{i \in \mathbb{Z}} R_i$ be an arbitrary graded *K*-algebra. Let \mathcal{J} denote the kernel of the canonical multiplication map $\mu : R \otimes_K R \to R, r \otimes r' \mapsto rr'$. The universal derivation of the *K*-algebra *R* is the homogeneous *K*-linear map $d_{R/K}: R \to \mathcal{J}/\mathcal{J}^2$ given by $d_{R/K}(r) = r \otimes 1 - 1 \otimes r + \mathcal{J}^2$, and the module of Kähler differentials of the K-algebra R is the graded R-module $\Omega_{R/K}^1$ = $\mathcal{J}/\mathcal{J}^2$.

Theorem 1. Let $\mathbb{Y}_1 = m_1 P_1 + \cdots + m_s P_s$ and $\mathbb{Y}_2 = (m_1 + 1)P_1 + \cdots + (m_s + 1)P_s$ be two sets of fat points with the corresponding homogeneous ideals $I_{\mathbb{Y}_1}, I_{\mathbb{Y}_2}$ respectively. The sequence of graded $R_{\mathbb{Y}_1}$ -modules

 $0 \longrightarrow I_{\mathbb{Y}_1}/I_{\mathbb{Y}_2} \xrightarrow{lpha} \Omega^1_{P/K}/I_{\mathbb{Y}_1}\Omega^1_{P/K} \xrightarrow{\varepsilon} \Omega^1_{R_{\mathbb{Y}_1}/K} \longrightarrow 0$

is exact, where $\alpha(F + I_{\mathbb{Y}_2}) = d_{P/K}F + I_{\mathbb{Y}_1}\Omega^1_{P/K}$ and $\varepsilon(Fd_{P/K}H + I_{\mathbb{Y}_1}\Omega^1_{P/K}) = (F + I_{\mathbb{Y}_2})$ $I_{\mathbb{Y}_1})d_{R_{\mathbb{Y}_1}/K}(H+I_{\mathbb{Y}_1}).$

The $R_{\mathbb{Y}_1}$ -module $\Omega_{P/K}^1/I_{\mathbb{Y}_1}\Omega_{P/K}^1$ is a free $R_{\mathbb{Y}_1}$ -module of rank n+1. By Theorem 1, we get some relations.

•
$$\operatorname{HF}_{\Omega^{1}_{R_{\mathbb{X}}/K}}(i) = (n+1)\operatorname{HF}_{\mathbb{Y}_{1}}(i-1) + \operatorname{HF}_{\mathbb{Y}_{1}}(i) - \operatorname{HF}_{\mathbb{Y}_{2}}(i).$$

• The Hilbert polynomial of $\Omega^{1}_{R_{\mathbb{Y}_{1}}/K}$ is

$$\operatorname{HP}_{\Omega^{1}_{R_{\mathbb{Y}_{1}}/K}} = \sum_{i=1}^{s} (n+2) \binom{m_{i}+n-1}{n} - \sum_{i=1}^{s} \binom{m_{i}+n}{n}$$

 $0 \longrightarrow \mathcal{G} \land / \backslash K_{\mathbb{W}}^{n+1}(-m-1) \longrightarrow / \backslash K_{\mathbb{W}}^{n+1}(-m-1) \longrightarrow \Omega_{R_{\mathbb{W}}/K}^{n+1} \longrightarrow 0$

exact, for each $m \ge 0$. Applying the exact sequence (1), we get the following representation of $\Omega^m_{R_{\mathbb{Y}}/K}$.

Proposition 4 (Ernst Kunz). Let \mathbb{Y} be a set of fat points in \mathbb{P}^n . Then $\Omega_{R_{\mathbb{Y}}/K} =$ $\Omega_{P/K}/(I_{\mathbb{Y}}, dI_{\mathbb{Y}})$. In particularly, for each $m \in \mathbb{N}$ we have

 $\Omega^m_{R_{\mathbb{Y}}/K} = \Omega^m_{P/K} / (I_{\mathbb{Y}} \Omega^m_{P/K} + dI_{\mathbb{Y}} \Omega^{m-1}_{P/K}).$

By using above presentation, I can write an ApCoCoA function which take the homogeneous ideal of a set of fat points \mathbb{Y} and a number *m* in \mathbb{N} as input and compute the values of the Hilbert function of $\Omega^m_{R_W/K}$. Moreover, the Hilbert function of $\Omega^m_{R_W/K}$ is described by the next proposition.

Proposition 5. Let $\alpha_{\mathbb{Y}} = \min\{i \in \mathbb{Z} \mid (I_{\mathbb{Y}})_i \neq 0\}$, and $\rho_{\mathbb{Y},m}$ be the regularity index of $\Omega^m_{R_\mathbb{Y}/K}.$

• For i < m we have $\dim_K(\Omega^{m,i}_{R_w/K}) = 0$.

• For $m \leq i < \alpha_{\mathbb{Y}} + m - 1$ then $\operatorname{HF}_{\Omega^m_{R_{\mathbb{Y}}/K}}(i) = \binom{n+1}{m} \cdot \binom{n+i-m}{n}$.

• We have $\operatorname{HF}_{\Omega^m_{R_{\mathbb{X}}/K}}(\sigma_{\mathbb{Y}}+m+1) \geq \operatorname{HF}_{\Omega^m_{R/K}}(\sigma_{\mathbb{Y}}+m+2) \geq \cdots$ and if $\rho_{\mathbb{Y},m} \geq \sigma_{\mathbb{X}}+m+1$ then $\operatorname{HF}_{\Omega^m_{R_{\mathbb{W}}/K}}(\sigma_{\mathbb{Y}}+m+1) > \operatorname{HF}_{\Omega^m_{R_{\mathbb{W}}/K}}(\sigma_{\mathbb{Y}}+m+2) > \cdots > \operatorname{HF}_{\Omega^m_{R_{\mathbb{W}}/K}}(\rho_{\mathbb{Y},m}).$

The following example shows that $HF_{\Omega^m_{R/K}}(i)$ may or may not be monotonic in the range of $\alpha_{\mathbb{X}} + m \leq i \leq \sigma_{\mathbb{X}} + m + 1$. Let $\mathbb{X} \subset \mathbb{P}^2$ consist of following nine points $\{(1:0:0), (1:$

• If $X = \{P_1, ..., P_s\}$ is in general position in \mathbb{P}^n , i.e. no h+2 points of X are on the h-plane for h < n. Then the regularity index $r_{\Omega^1_{R_M/K}}$ of $\Omega^1_{R_M/K}$, is bounded by

 $r_{\Omega^1_{R_{\mathbb{Y}}/K}} \leq \max\left\{m_1 + m_2 + 1, \left[\left(\sum_{i=1}^s m_i + s + n - 2\right)/n\right]\right\}.$

• If $m_1 = ... = m_s = m \ge 2$ and the set of *s* distinct *K*-rational points $\mathbb{X} = \{P_1, ..., P_s\} \subseteq \mathbb{P}^n$ is a complete intersection, then E. Guardo et al. show that the schemes $Y_i = mP_1 + \cdots + mP_i$ $(m-1)P_i + \cdots + mP_s$ all have the same Hilbert functions. Altogether, this show the Hilbert functions of $\Omega^1_{R_{\mathbb{Y}_i}/K}$ are also the same.

Definition 2.

- The exterior algebra over R of the R-module of Kähler differential $\Omega^1_{R/K}$, denoted by $\Omega_{R/K}$, is called Kähler differential algebra of the *K*-algebra *R*.
- Let $\Omega^m_{R/K}$ denote the exterior *m* product over *R* of *R*-module $\Omega^1_{R/K}$. Then we have $\Omega_{R/K} = \bigoplus_{m \in \mathbb{N}} \Omega_{R/K}^{m}$. The Kähler differential algebra $\Omega_{R/K}$ is said to be bigraded if there exist *K*-submodules $\Omega_{R/K}^{m,i} \subseteq \Omega_{R/K}^m$ ($m \in \mathbb{N}, i \in \mathbb{Z}$) such that $\diamond \text{ For each } m \in \mathbb{N}, \ \Omega^m_{R/K} = \bigoplus_{i \in \mathbb{Z}} \Omega^{m,i}_{R/K}.$
- ♦ For each $m, m' \in \mathbb{N}$ and $i, i' \in \mathbb{Z}$ then $Ω_{R/K}^{m,i} \cdot Ω_{R/K}^{m',i'} \subseteq Ω_{R/K}^{m+m',i+i'}$.
- ♦ For each *i* ∈ \mathbb{Z} , $\Omega^{0,i}_{R/K} = R_i$
- ♦ For each $r \in R_i$, $i \in \mathbb{Z}$ then $d_{R/K}(r) \in \Omega_{R/K}^{1,i}$

- 0:1, (1:0:2), (1:0:3), (1:0:4), (1:0:5), (1:1:0), (1:2:0), (1:1:1). Then • HF_X : 1 3 6 7 8 9 9, $\cdots \alpha_X$ = 3 and σ_X = 4. • $HF_{\Omega^1_{R/K}}$: 0 3 9 15 14 13 14 13 12 11 10 9 9 · · · • $HF_{\Omega^2_{R/K}}$: 0 0 3 9 9 4 5 4 3 2 1 0 0 · · ·
- $HF_{\Omega^3_{R/K}}$: 0 0 0 1 3 0 0 · · ·

Some special cases

Proposition 6. Let $\mathbb{X} = \{P_1 = (P_{10} : P_{11} : \cdots : P_{1n}), \dots, P_s = (P_{s0} : P_{s1} : \cdots : P_{sn})\}$ be a set of s distinct K-rational points in \mathbb{P}^n . Let $\mathcal{A} = (P_{ij}) \in \operatorname{Mat}_{s,n+1}(K)$ and let r be the rank of the matrix \mathcal{A} . Then we have $\Omega_{R_X/K}^{r+i} = 0$ for all $i \ge 1$ and $\operatorname{HF}_{\Omega_{R_X/K}^r}(r) = 1$.

For example, let $\mathbb{X} = \{P_1, ..., P_s\}$ be a set of s distinct *K*-rational points on a line in \mathbb{P}^n . Then $\Omega^3_{R_w/K} = 0$. Moreover, we also have

• $HF_{\Omega^1_{R_w/K}}$: 0 2 4 6 ... 2(s-2) 2(s-1) 2s-1 2s-2 ...s s ... • $HF_{\Omega^2_{R_w/K}}$: 0 0 1 2 ... s - 2 s - 1 s - 2 s - 3 ... 0 0 ...

We can characterize the figuration of a set of s distinct K-rational points X in \mathbb{P}^2 by looking at the values of the Hilbert function of $\Omega^3_{R_X/K}$ as follows.

Proposition 7. Let X be a set of s distinct K-rational points in \mathbb{P}^2 with s > 4. Then we have

Proposition 3. Let $\mathbb{Y} = m_1 P_1 + \cdots + m_s P_s$ be a set of fat points in \mathbb{P}^n .

• If $m_1 = ... = m_s = 1$ then for each m > 1 we have $\dim_K(\Omega_{R_{\mathbb{W}}}^{m,i}) = 0$ for all $i \ge 2\sigma_{\mathbb{Y}} + 1$ m+2, where $\sigma_{\mathbb{Y}} = \max\{i \in \mathbb{Z} | \operatorname{HF}_{\mathbb{Y}}(i) < s\}$

• If there is an index $j \in \{1, ..., s\}$ such that $m_i > 1$ then for each $m \le n+1$ we have

 $0 < \dim_{K}(\Omega_{R_{\mathbb{Y}}/K}^{m,i}) \le \sum_{i=1}^{s} \binom{n+1}{m} \binom{m_{i}+n-1}{n}$

for all $i \geq m$.

• $\operatorname{HF}_{\Omega^3_{R_{\mathbb{X}}/K}}(i) = 0$ for all $i \in \mathbb{N}$ if and only if \mathbb{X} lies on a line. • $\operatorname{HF}_{\Omega^3_{R_w/K}}(i) \leq 1$ for all $i \in \mathbb{N}$ and $\operatorname{HF}_{\Omega^3_{R_w/K}}(3) = 1$ if and only if \mathbb{X} lies on a quadric. *Further more*,

 \diamond If $\operatorname{HF}_{\Omega^3_{R_{\mathbb{X}}/K}}(3) = 1$, $\operatorname{HF}_{\Omega^3_{R_{\mathbb{X}}/K}}(4) = 1$, then \mathbb{X} lies on two lines, none of s - 1 points of \mathbb{X} lies on a line.

♦ If $\operatorname{HF}_{\Omega^3_{R_{\mathbb{X}}/K}}(3) = 1$, $\operatorname{HF}_{\Omega^3_{R_{\mathbb{X}}/K}}(i) = 0$, $i \neq 3$ and $\Delta \operatorname{HF}_{\mathbb{X}}(i) \leq 1$ for all $i \geq 2$, then \mathbb{X} contains s - 1 points which lie on a line.

♦ If $\operatorname{HF}_{\Omega^3_{R_{\mathbb{W}}/K}}(3) = 1$, $\operatorname{HF}_{\Omega^3_{R_{\mathbb{W}}/K}}(i) = 0$, $i \neq 3$ and there is $i \geq 2$ such that $\Delta \operatorname{HF}_{\mathbb{X}}(i) \geq 2$ then X lies on an irreducible quadric.

The International School on Computer Algebra: COCOA 2013 (10-14th June 2013) at Institute of Mathematics, University of Osnabrück, Germany.