Kähler Differential algebras for finite point sets in \mathbb{P}^{n}

Tran Nguyen Khanh Linh
Department of Informatics and Mathematics
University of Passau, Germany

General setting

Throughout this poster, we let K be an algebraically closed field. Let $\mathbb{X}=\left\{P_{1}, \ldots, P_{s}\right\}$ be a set of s distinct K-rational points in \mathbb{P}^{n} such that $\mathbb{X} \cap \mathbb{Z}^{+}\left(X_{0}\right)=\emptyset$. Let m_{1}, \ldots, m_{s} be positive integers and let \mathbb{Y} be a scheme defined by $I_{\mathbb{Y}}=\wp_{1}^{m_{1}} \cap \cdots \cap \wp_{s}^{n_{s}}$, where each \wp_{i} is the defining ideal of the point P_{i}. The scheme \mathbb{Y}, which we denote $\mathbb{Y}=m_{1} P_{1}+\cdots+m_{s} P_{s}$, is usually called a set of fat points in \mathbb{P}^{n}. We equip $P=K\left[X_{0}, \ldots, X_{n}\right]$ with its standard grading $\operatorname{deg}\left(X_{i}\right)=1$. The quotient ring $R_{\mathbb{Y}}=P / I_{\mathbb{Y}}$ is the homogenous coordinate ring of the scheme \mathbb{Y}.

Definition and Properties

Let $R=\oplus_{i \in \mathbb{Z}} R_{i}$ be an arbitrary graded K-algebra. Let \mathcal{J} denote the kernel of the canonical multiplication map $\mu: R \otimes_{K} R \rightarrow R, r \otimes r^{\prime} \mapsto r r^{\prime}$. The universal derivation of the K-algebra R is the homogeneous K-linear map $d_{R / K}: R \rightarrow \mathcal{J} / \mathcal{J}^{2}$ given by $d_{R / K}(r)=r \otimes 1-1 \otimes r+\mathcal{J}^{2}$, and the module of Kähler differentials of the K-algebra R is the graded R-module $\Omega_{R / K}^{1}=$ $\mathcal{J} / \mathcal{J}^{2}$.

Theorem 1. Let $\mathbb{Y}_{1}=m_{1} P_{1}+\cdots+m_{s} P_{s}$ and $\mathbb{Y}_{2}=\left(m_{1}+1\right) P_{1}+\cdots+\left(m_{s}+1\right) P_{s}$ be two sets of fat points with the corresponding homogeneous ideals $I_{\mathbb{Y}_{1}}, I_{\mathbb{Y}_{2}}$ respectively. The sequence of graded $R_{\mathbb{Y}_{1}}$-modules

$$
0 \longrightarrow I_{\mathbb{Y}_{1}} / I_{\mathbb{Y}_{2}} \xrightarrow{\alpha} \Omega_{P / K}^{1} / I_{\mathbb{Y}_{1}} \Omega_{P / K}^{1} \xrightarrow{\varepsilon} \Omega_{R_{\mathbb{Y}_{1}} / K}^{1} \longrightarrow 0
$$

is exact, where $\alpha\left(F+I_{\mathbb{Y}_{2}}\right)=d_{P / K} F+I_{\mathbb{Y}_{1}} \Omega_{P / K}^{1}$ and $\varepsilon\left(F d_{P / K} H+I_{\mathbb{Y}_{1}} \Omega_{P / K}^{1}\right)=(F+$ $\left.I_{\mathbb{Y}_{1}}\right) d_{R_{\mathbb{Y}_{1}} / K}\left(H+I_{\mathbb{Y}_{1}}\right)$.
The $R_{\mathbb{Y}_{1}}$-module $\Omega_{P / K}^{1} / I_{\mathbb{Y}_{1}} \Omega_{P / K}^{1}$ is a free $R_{\mathbb{Y}_{1}}$-module of rank $n+1$. By Theorem 1 , we get some relations.
$\bullet \mathrm{HF}_{\Omega_{R_{\mathbb{X}} / K}^{1}}(i)=(n+1) \mathrm{HF}_{\mathbb{Y}_{1}}(i-1)+\mathrm{HF}_{\mathbb{Y}_{1}}(i)-\mathrm{HF}_{\mathbb{Y}_{2}}(i)$

- The Hilbert polynomial of $\Omega_{R_{Y_{1}} / K}^{1}$ is

$$
\mathrm{HP}_{\Omega_{R_{\mathrm{K}_{1} / K}}^{1}}=\sum_{i=1}^{s}(n+2)\binom{m_{i}+n-1}{n}-\sum_{i=1}^{s}\binom{m_{i}+n}{n}
$$

- If $\mathbb{X}=\left\{P_{1}, . ., P_{s}\right\}$ is in general position in \mathbb{P}^{n}, i.e. no $h+2$ points of \mathbb{X} are on the h-plane for $h<n$. Then the regularity index $r_{\Omega_{R 叉 / K}^{1}}$ of $\Omega_{R_{Y} / K}^{1}$, is bounded by

$$
r_{\Omega_{R_{\mathrm{R}} / K}} \leq \max \left\{m_{1}+m_{2}+1,\left[\left(\sum_{i=1}^{s} m_{i}+s+n-2\right) / n\right]\right\}
$$

- If $m_{1}=\ldots=m_{s}=m \geq 2$ and the set of s distinct K-rational points $\mathbb{X}=\left\{P_{1}, \ldots, P_{s}\right\} \subseteq \mathbb{P}^{n}$ is a complete intersection, then E. Guardo et al. show that the schemes $Y_{i}=m P_{1}+\cdots+$ $(m-1) P_{i}+\cdots+m P_{s}$ all have the same Hilbert functions. Altogether, this show the Hilbert functions of $\Omega_{R_{\gamma} / K}^{1}$ are also the same.

Definition 2.

- The exterior algebra over R of the R-module of Kähler differential $\Omega_{R / K}^{1}$, denoted by $\Omega_{R / K}$, is called Kähler differential algebra of the K-algebra R.
- Let $\Omega_{R / K}^{m}$ denote the exterior m product over R of R-module $\Omega_{R / K}^{1}$. Then we have $\Omega_{R / K}=\oplus_{m \in \mathbb{N}} \Omega_{R / K}^{m}$. The Kähler differential algebra $\Omega_{R / K}$ is said to be bigraded if there exist K-submodules $\Omega_{R / K}^{m, i} \subseteq \Omega_{R / K}^{m}(m \in \mathbb{N}, i \in \mathbb{Z})$ such that
\diamond For each $m \in \mathbb{N}, \Omega_{R / K}^{m}=\oplus_{i \in \mathbb{Z}} \Omega_{R / K}^{m, i}$
\diamond For each $m, m^{\prime} \in \mathbb{N}$ and $i, i^{\prime} \in \mathbb{Z}$ then $\Omega_{R / K}^{m, i} \cdot \Omega_{R / K}^{m^{\prime}, i^{\prime}} \subseteq \Omega_{R / K}^{m+m^{\prime}, i+i i^{\prime}}$.
\diamond For each $i \in \mathbb{Z}, \Omega_{R / K}^{0, i}=R_{i}$
\diamond For each $r \in R_{i}, i \in \mathbb{Z}$ then $d_{R / K}(r) \in \Omega_{R / K}^{1, i}$

Proposition 3. Let $\mathbb{Y}=m_{1} P_{1}+\cdots+m_{s} P_{s}$ be a set of fat points in \mathbb{P}^{n}

- If $m_{1}=\ldots=m_{s}=1$ then for each $m>1$ we have $\operatorname{dim}_{K}\left(\Omega_{R_{\mathbb{Y}}}^{m, i}\right)=0$ for all $i \geq 2 \sigma_{\mathbb{Y}}+$ $m+2$, where $\sigma_{\mathbb{Y}}=\max \left\{i \in \mathbb{Z} \mid \mathrm{HF}_{\mathbb{Y}}(i)<s\right\}$
- If there is an index $j \in\{1, \ldots, s\}$ such that $m_{j}>1$ then for each $m \leq n+1$ we have

$$
0<\operatorname{dim}_{K}\left(\Omega_{R_{\mathbb{Y}} / K}^{m, i}\right) \leq \sum_{i=1}^{s}\binom{n+1}{m}\binom{m_{i}+n-1}{n}
$$

for all $i \geq m$.

Now we let \mathcal{G} be the graded $R_{\mathbb{Y}}$-module generated by vectors $\left(\frac{\partial F}{\partial x_{0}}, \ldots, \frac{\partial F}{\partial x_{n}}\right.$), where $F \in I_{\mathbb{Y}}$ and x_{i} is the image of X_{i} in $R_{\mathbb{Y}}$. Set deg $d x_{i}=1$. The exact sequence of graded $R_{\mathbb{Y}}$-modules

$$
0 \longrightarrow \mathcal{G}(-1) \longrightarrow R_{\mathbb{Y}}^{n+1}(-1) \longrightarrow \Omega_{R_{\mathbb{Y}} / K}^{1} \longrightarrow 0
$$

which is mentioned in a paper "Kähler differentials for points in \mathbb{P}^{n} " of G. Dominicis and M. Kreuzer, induces the sequence of K-algebras

$$
0 \longrightarrow \mathcal{G} \wedge \bigwedge R_{\mathbb{Y}}^{n+1} \longrightarrow \bigwedge R_{\mathbb{Y}}^{n+1} \longrightarrow \Omega_{R_{\mathbb{Y}} / K} \longrightarrow 0
$$

as well as the sequence of graded $R_{\mathbb{Y}}$-modules

$$
\begin{equation*}
0 \longrightarrow \mathcal{G} \wedge \bigwedge^{m} R_{\mathbb{Y}}^{n+1}(-m-1) \longrightarrow \bigwedge^{m+1} R_{\mathbb{Y}}^{n+1}(-m-1) \longrightarrow \Omega_{R_{\mathbb{Y}} / K}^{m+1} \longrightarrow 0 \tag{1}
\end{equation*}
$$

exact, for each $m \geq 0$. Applying the exact sequence (1), we get the following representation of $\Omega_{R_{Y} / K}^{m}$.
Proposition 4 (Ernst Kunz). Let \mathbb{Y} be a set of fat points in \mathbb{P}^{n}. Then $\Omega_{R_{\mathbb{Z}} / K}=$ $\Omega_{P / K} /\left(I_{\mathbb{Y}}, d I_{\mathbb{Y}}\right)$. In particularly, for each $m \in \mathbb{N}$ we have

$$
\Omega_{R_{\mathbb{Y}} / K}^{m}=\Omega_{P / K}^{m} /\left(I_{\mathbb{Y}} \Omega_{P / K}^{m}+d I_{\mathbb{Y}} \Omega_{P / K}^{m-1}\right) .
$$

By using above presentation, I can write an ApCoCoA function which take the homogeneous ideal of a set of fat points \mathbb{Y} and a number m in \mathbb{N} as input and compute the values of the Hilbert function of $\Omega_{R_{Y} / K}^{m}$. Moreover, the Hilbert function of $\Omega_{R_{Y} / K}^{m}$ is described by the next proposition.
Proposition 5. Let $\alpha_{\mathbb{Y}}=\min \left\{i \in \mathbb{Z} \mid\left(I_{\mathbb{Y}}\right)_{i} \neq 0\right\}$, and $\rho_{\mathbb{Y}, m}$ be the regularity index of $\Omega_{R_{\mathbb{Y}} / K}^{m}$.

- For $i<m$ we have $\operatorname{dim}_{K}\left(\Omega_{R_{\mathbb{Y}} / K}^{m, i}\right)=0$.
- For $m \leq i<\alpha_{\mathbb{Y}}+m-1$ then $\mathrm{HF}_{\Omega_{R_{\mathbb{Y}} / K}}(i)=\binom{n+1}{m} \cdot\binom{n+i-m}{n}$.
- We have $\mathrm{HF}_{\Omega_{R_{\mathbb{Y}} / K}^{m}}\left(\sigma_{\mathbb{Y}}+m+1\right) \geq \mathrm{HF}_{\Omega_{R / K}^{m}}\left(\sigma_{\mathbb{Y}}+m+2\right) \geq \cdots$ and if $\rho_{\mathbb{Y}, m} \geq \sigma_{\mathbb{X}}+m+1$ then $\mathrm{HF}_{\Omega_{R_{\mathrm{Y}} / K}^{m}}\left(\sigma_{\mathrm{Y}}+m+1\right)>\mathrm{HF}_{\Omega_{R_{\mathrm{Y}} / K}^{m}}\left(\sigma_{\mathrm{Y}}+m+2\right)>\cdots>\mathrm{HF}_{\Omega_{R_{\mathrm{Y}} / K}}\left(\rho_{\mathrm{Y}, m}\right)$.
The following example shows that $\mathrm{HF}_{\Omega_{R / K}^{m}}(i)$ may or may not be monotonic in the range of $\alpha_{\mathbb{X}}+m \leq i \leq \sigma_{\mathbb{X}}+m+1$. Let $\mathbb{X} \subset \mathbb{P}^{2}$ consist of following nine points $\{(1: 0: 0),(1$: $0: 1),(1: 0: 2),(1: 0: 3),(1: 0: 4),(1: 0: 5),(1: 1: 0),(1: 2: 0),(1: 1: 1)\}$. Then
- $\mathrm{HF}_{\mathbb{X}}: 1367899, \cdots \alpha_{\mathbb{X}}=3$ and $\sigma_{\mathbb{X}}=4$.
- $\mathrm{HF}_{\Omega_{R / K}^{1}}: 039151413141312111099 \ldots$
- $\mathrm{HF}_{\Omega_{R / K}^{2}}: 0039945432100$.
- $\mathrm{HF}_{\Omega_{R / K}^{3}}: 0001300$.

Some special cases

Proposition 6. Let $\mathbb{X}=\left\{P_{1}=\left(P_{10}: P_{11}: \cdots: P_{1 n}\right), \ldots, P_{s}=\left(P_{s 0}: P_{s 1}: \cdots: P_{s n}\right)\right\}$ be a set of s distinct K-rational points in \mathbb{P}^{n}. Let $\mathcal{A}=\left(P_{i j}\right) \in \operatorname{Mat}_{s, n+1}(K)$ and let r be the rank of the matrix \mathcal{A}. Then we have $\Omega_{R_{\mathbb{X}} / K}^{r+i}=0$ for all $i \geq 1$ and $\mathrm{HF}_{\Omega_{R_{\mathbb{X}} / K}^{r}}(r)=1$.
For example, let $\mathbb{X}=\left\{P_{1}, \ldots, P_{s}\right\}$ be a set of s distinct K-rational points on a line in \mathbb{P}^{n}. Then $\Omega_{R_{\mathbb{X}} / K}^{3}=0$. Moreover, we also have

- $\mathrm{HF}_{\Omega_{R_{\mathbb{Z}} / K}^{1}}: 0246 \ldots 2(s-2) 2(s-1) 2 s-12 s-2 \ldots s s \ldots$
- $\mathrm{HF}_{\Omega_{R_{\mathbb{Z}}^{2} / K}}: 0012 \ldots s-2 s-1 s-2 s-3 \ldots 00 \ldots$

We can characterize the figuration of a set of s distinct K-rational points \mathbb{X} in \mathbb{P}^{2} by looking at the values of the Hilbert function of $\Omega_{R_{\mathrm{X}} / K}^{3}$ as follows.
Proposition 7. Let \mathbb{X} be a set of s distinct K-rational points in \mathbb{P}^{2} with $s>4$. Then we have

- $\mathrm{HF}_{\Omega_{R_{\mathbb{K}} / K}}(i)=0$ for all $i \in \mathbb{N}$ if and only if \mathbb{X} lies on a line.
$\bullet \mathrm{HF}_{\Omega_{R_{\mathbb{Z}} / K}^{3}}(i) \leq 1$ for all $i \in \mathbb{N}$ and $\mathrm{HF}_{\Omega_{R_{\mathbb{X}} / K}}(3)=1$ if and only if \mathbb{X} lies on a quadric. Further more,
\diamond If $\mathrm{HF}_{\Omega_{R_{\mathbb{X}} / K}^{3}}(3)=1, \mathrm{HF}_{\Omega_{R_{\mathbb{X}} / K}^{3}}(4)=1$, then \mathbb{X} lies on two lines, none of $s-1$ points of \mathbb{X} lies on a line.
\diamond If $\mathrm{HF}_{\Omega_{R_{\mathbb{Z}}^{3} / K}^{3}}(3)=1, \mathrm{HF}_{\Omega_{R \mathbb{K}}^{3} / K}(i)=0, i \neq 3$ and $\Delta \mathrm{HF}_{\mathbb{X}}(i) \leq 1$ for all $i \geq 2$, then \mathbb{X} contains s-1 points which lie on a line.
\diamond If $\mathrm{HF}_{\Omega_{R_{\mathbb{X}} / K}^{3}}(3)=1, \mathrm{HF}_{\Omega_{R_{\mathbb{X}} / K}^{3}}(i)=0, i \neq 3$ and there is $i \geq 2$ such that $\Delta \mathrm{HF}_{\mathbb{X}}(i) \geq 2$ then \mathbb{X} lies on an irreducible quadric.

