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Abstract

This poster explains a generalization of Green's

Hyperplane Restriction Theorem to the case of

modules over the polynomial ring, providing in

particular an upper bound for the Hilbert func-

tion of the general linear restriction of a mod-

ule M in a degree d by the corresponding Hilbert

function of a lexicographic module.

Setting

De�nition. Given a, d ∈ N, the d-th Macaulay

representation of a is the only way of writing a
as
(
ad

d

)
+
(
ad−1

d−1
)
+ · · · +

(
a1

1

)
, where ad > ad−1 >

· · · > a1 ≥ 0.
Let us set

(
c
d

)
= 0 when c < d, we denote by a〈d〉

the integer

a〈d〉 =

(
ad − 1

d

)
+ · · ·+

(
a1 − 1

1

)
.

Let R = k[x1, . . . xn], where k is an in�nite �eld,

and let R be standard graded. Let us �x the

graded lexmonomial order on R with x1 > x2 >
· · · > xn, i.e. x

a >grlex xb ⇔ |a| > |b| or |a| =
|b| and a >lex b

De�nition. A monomial ideal I ⊆ R is a lexi-

cographic ideal if, for each degree d, Id is a lex-
space, i.e. a vector space generated by the largest
dim(Id) monomials, according to grad-lex.

De�nition. We say that a property P holds for
a generic linear form ` if there is a non-empty
Zariski open set U ⊆ R1 such that P holds for all
` ∈ U .

Green's Theorem

Theorem. Let I be an homogeneous ideal in
S and IW the restriction to a generic hyper-
plane, denote by h and hW respectively the
Hilbert functions of S/I and of SW /IW , then
hW(d) ≤ h(d)〈d〉.

Extension to modules

Let F be a free �nitely generated R-module and

let {e1, e2, . . . , er} be an homogeneous basis, let

deg(ei) = fi, where, without loss of generality,

f1 ≤ f2 ≤ · · · ≤ fr.

De�nition. A monomial in F is an element of
the form mei where m ∈Mon(R).
A submodule M ⊆ F is monomial if it is gener-
ated by monomials.
In this case it can be written as I1e1 ⊕ · · · ⊕ Irer,
where Ii is a monomial ideal.

The lexicographic order in F is de�ned as follows:

given two monomials in F , mei and nej , we say

that mei >lex nej if either i = j and m >lex n in

R or i < j. In particular, we have that e1 > e2 >
· · · > er.

De�nition. A monomial submodule L is a lex-

icographic module if for every degree d Ld is
spanned by the largest, with respect to the lexico-
graphic order, H(L, d) monomials.

If ` ∈ R1 is a linear form, and M a submodule of

F , let us denote by (F/M)` the restriction of the

module F/M to `, which is equal to F/(M + `F ).

Green's Theorem for modules

Theorem. Let F = Re1 ⊕ · · · ⊕ Rer where
deg(ei) = fi for all i. Let M be a submodule
in F , then

H((F/M)`, d) ≤ H((F/L)`, d)

where ` is generic linear form, d ∈ N, and L is a
submodule that in degree d is generated by a lex-
segment of length H(M,d).
Set di = d − fi (it is a non-increasing sequence)
and Ni =

(
n+di−1

di

)
. Then:

H((F/L)`, d) = H(F/M, d){d,r},

where, if
∑r

i=j+1 Ni ≤ H(F/M, d) ≤
∑r

i=j Ni,
for some j, then we de�ne H(F/M, d){d,r} =
(H(F/M, d)−

∑r
i=j+1 Ni)〈dj〉 +

∑r
i=j+1 Ni〈di〉.

Idea of the proof

We reduce to the monomial case: a monomial

submodule is direct sum of monomial compo-

nents, so we can apply the Green's theorem to

each of these components, obtaining a �rst bound.

Afterwards we bound what we get by the Hilbert

function of the quotient by lexicographic module.

In order to do that we �rst prove an inequality on

the sum of two integers, this inequality is just the

numerical translation of the theorem we want to

prove in the case rank(F ) = 2.
Later, we extend the inequality, using an induc-

tion argument, to the sum of r integers, and we

deduce the extension of the Green's theorem.


