

ABSTRACT

Let X be a smooth complex projective variety. We introduce the **Hilbert variety** V_X associated to the Hilbert polynomial, a very classical concept in Algebraic Geometry

$$\chi(x_1L_1+\ldots+x_\rho L_\rho)$$

where x_1, \ldots, x_{ρ} are complex variables and L_1, \ldots, L_{ρ} is a basis of Pic(X). We study general properties of V_X and we specialize to the Hilbert curve of the polarized variety (X, L), namely the plane curve (in the plane $\langle K_X, L \rangle$) of degree dim X, associated to $\chi(xK_X + yL)$. For details we refer to: M. Lavaggi, Invariante j per 3-folds polarizzati, Tesi di Laurea, Corso di Laurea Magistrale, Università degli Studi di Genova, a.a. 2011/2012.

BASIC NOTATION & DEFINITIONS

We work over the field \mathbb{C} . We use standard notation from Algebraic Geometry, among which we recall the following ones.

- \mathcal{O}_X , the structure sheaf of X.

- K_X is the canonical sheaf of X.

- For any coherent sheaf \mathcal{F} on X, $h^i(\mathcal{F})$ stands for the complex dimension of $H^i(X, \mathcal{F})$.

- $\chi(\mathcal{F}) := \sum_{i} (-1)^{i} h^{i}(\mathcal{F})$, the Euler characteristic of \mathcal{F} . We say that:

- L is spanned if it is globally generated, at all points of X by $H^0(X, L)$.

- L is numerically effective (nef, for short) if $L \cdot C \geq 0$ for all effective curves C on X.

- L is very ample if the complete linear system |L| induce an embedding $X \to \mathbb{P}^N$, where $N = h^0(X, L) - 1$.

- We say that L is *ample* if exsists m > 0 such that $L^{\otimes m}$ is very ample.

DEGENERATE CASE

Let (X, L) be a polarized variety, and assume that $K_X = \lambda L$ for some $\lambda \in \mathbb{Q}$, so that $\langle K_X, L \rangle$ becomes a line.

Even in this case we can consider the polynomial

$$p(x,y) = \chi(xK_X + yL),$$

defining a plane curve, which we call the *degenerate Hilbert curve*, say Γ_0 , of (X, L). Writing $t := \lambda x + y$,

$$p(x,y) = \wp(t) \in \mathbb{C}[t]$$

is a polynomial of degree $n := \dim(X)$ in t and its zeros correspond to the slice $\mathbb{C}_{(t)} \cap V_X$. Moreover, Γ_0 is the union of *n* parallel lines, ℓ_j , of equation $\lambda x + y - t_i = 0$, where t_i are the roots of $\wp(t), j = 1, \ldots, n$. We refer to this situation as the "degenerate case". **EXAMPLE:**

To produce an example, we can consider the polarized variety $(X, L) = (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(3)),$ clearly $K_X = -3L.$

The Hilbert curve splits in two parallel lines, r: x - 3y - 2 = 0 e t: x - 3y - 1 = 0. We can also observe that the Hilbert curve is symmetric respect to $C = \left(\frac{1}{2}, 0\right)$.

HILBERT CURVES OF POLARIZED VARIETIES

Michela Lavaggi lavaggi@dima.unige.it

HILBERT VARIETY: THE GENERAL FRAMEWORI

Here we outline how to obtain the Hilbert variety associated to a smooth *n*-fold X. The Hilbert variety does not depend by any basis of Pic(X). Let $\operatorname{Pic}_0(X) \subset \operatorname{Pic}(X)$ denote the subgroup of topologically trivial line bundles. Set $\mathbf{N}(X) := (\operatorname{Pic}(X)/\operatorname{Pic}_0(X)) \otimes_{\mathbb{Z}} \mathbb{C}$. The Euler characteristic map

$$\chi : \operatorname{Pic}(X) \to \mathbb{Z},$$

defined by $L \mapsto \chi(L)$, gives rise to a polynomial function

$$p: \mathbf{N}(X) \to \mathbb{C}.$$

Note that $\mathbf{N}(X) \cong \mathbb{A}^{\rho}_{\mathbb{C}}$, where $\rho := \rho(X)$ is the Picard number of X. Via this isomorphism, if $\mathbf{N}(X) = \langle L_1, \ldots, L_\rho \rangle$ with $L_1, \ldots, L_\rho \in \operatorname{Pic}(X)$ and writing $\mathcal{L} = \sum_{i=1}^{\rho} x_i L_i \in \mathbf{N}(X), x_i \in \mathbb{C}$, the image

 $p(\mathcal{L}) = p(x_1, \dots, x_{\rho})$

is the evaluation in \mathcal{L} of the polynomial $p \in \mathbb{C}[x_1, \ldots, x_{\rho}]$, when we consider x_1, \ldots, x_{ρ} as complex variables. In other words, for x_1, \ldots, x_{ρ} integers, we consider the Hilbert polynomial

$$\chi(x_1,\ldots,x_\rho) := \chi(x_1L_1 + \cdots +$$

and we denote by $p(x_1, \ldots, x_\rho)$ the polynomial $\chi(x_1, \ldots, x_\rho)$ when we consider x_1, \ldots, x_{ρ} as complex variables.

Let us consider the affine variety $V_X := V(p)$, which is an hypersurface of degree dim(X) in $\mathbf{N}(X) \cong \mathbb{A}^{\rho}_{\mathbb{C}}$. We say that V_X is the **(affine)** Hilbert variety associated to X.

PROPERTIES OF V_X :

- V_X is symmetric with respect to $C = \left(\frac{1}{2}, 0, \right)$ - For n even, if $C \in V_X$, then V_X is singular - For any n, if $C \in V_X$ is a point of multiplic point of multiplicity n of V_X .

EXAMPLE

Let X be a smooth element in $|\mathcal{O}_{\mathbb{P}^2 \times \mathbb{P}^2}(4,4)|$ and let $L = (\mathcal{O}_{\mathbb{P}^2 \times \mathbb{P}^2}(1,2))_X$. Direct computations give for the Hilbert polynomial of the polarized pair (X, L) the expression

$$p(x,y) = (2x + 3y - 1)(2x^2 + 6xy + 4y^2 - 2x - 3y + 8)$$

 $x_{\rho}L_{\rho}),$

$$(\ldots, 0) \in \mathbb{A}^{\rho};$$

at C;
city $n-1$, then C is a

2x + 3y - 1 = 0 $-2x^2 + 6xy + 4y^2 - 2x - 3y + 8 = 0$

HILBERT CURVE

Let X be a projective variety of dimension n, let L be ample line bundles on X and consider the Hilbert polynomial

 $\chi(x,y) := \chi(xK_X + yL)$

with $x,y \in \mathbb{Z}$. Let p(x,y) be the polynomial $\chi(x,y)$ when we consider x, yand z as complex variables. The zeroes of p(x, y) correspond to taking a slice of the Hilbert variety V_X by the 2-dimensional vector subspace $\mathbb{C}^2_{(x,y)} \subseteq \mathbf{N}(X) \ (\mathbb{C}^2_{(x,y)} = \langle K_X, L \rangle$ whenever K_X, L are \mathbb{C} -linearly independent). We will also write

 $V_{(X,L)} := \mathbb{C}^2_{(x,y)} \cap V_X,$

and we will say that the degree $n := \dim(X)$ affine curve $\Gamma := V_{(X,L)}$ is the Hilbert curve of the polarized variety (X, L). For example, if n = 3, Γ is an elliptic curve as soon as it is not singular.

HILBERT CURVES FOR SPECIAL VARIETIES

This is a sample of general structure result we have.

Theorem 1 Let X be a smooth n-dimensional variety, and let $\varphi: X \to Y$ be a morphism onto a normal variety Y of dimension $\dim(Y) < \dim(X)$. Let L be a φ -nef and φ -big line bundle on X, and assume that for coprime positive integers a, b, $K_X + \frac{a}{b}L = \varphi^*A$ for some Q-line bundle A on Y. Then $\chi(xK_X + yL) = 0$ for all integers x, y belonging to the a-1 parallel lines ax - by - i = 0 for $i = 1, \ldots, a-1$. In particular, for some degree n - a + 1 factor R(x, y) we have

$$p(x,y) = \prod_{i=1}^{a-1} (ax)$$

for an ample line bundle on Y. It is easy to show that the Hilbert cubic splits in three lines.

TWO OPEN QUESTIONS

- In this case we would deal with quartic plane curves.
- Hilbert surface associated to the bipolarized variety. If X is a 3-fold, then we deal with a cubic surface.

DIPARTIMENTO DI MATEMATICA UNIVERSITA' DI GENOVA

-by-i)R(x,y).

This figure shows the Hilbert curve associated to a polarized 3-fold (X, L), where X is a scroll over a curve Y of genus g = 2. So it follows that

 $K_X + 3L = \varphi^* A$

• To analyze the Hilbert curve associated to a polarized 4-fold (X, L).

• To study bipolarized varieties, namely, 3-tuples (X, L_1, L_2) where L_1 and L_2 are ample line bundle on X. In this case we consider the