Abstract

Let X be a smooth complex projective variety. We introduce the Hilbert variety V_{X} associated to the Hilbert polynomial, a very classical concept in Algebraic Geometry

$$
\chi\left(x_{1} L_{1}+\ldots+x_{\rho} L_{\rho}\right)
$$

where x_{1}, \ldots, x_{ρ} are complex variables and L_{1}, \ldots, L_{ρ} is a basis of $\operatorname{Pic}(X)$. We study general properties of V_{X} and we specialize to the Hilbert curve of the polarized variety (X, L), namely the plane curve (in the plane $\rangle K_{X}, L\langle)$ of degree $\operatorname{dim} X$, associated to
$\chi\left(x K_{X}+y L\right)$. For details we refer to: M. Lavaggi, Invariante j per 3-folds polarizzati, Tesi di Laurea, Corso di Laurea Magistrale, Università degli Studi di Genova, a.a. 2011/2012.

Basic notation \& Definitions

We work over the field \mathbb{C}. We use standard notation from Algebraic Geometry, among which we recall the following ones.
\mathcal{O}_{X}, the structure sheaf of X.
K_{X} is the canonical sheaf of X.

- For any coherent sheaf \mathcal{F} on $X, h^{i}(\mathcal{F})$ stands for the complex dimension of $H^{i}(X, \mathcal{F})$.
- $\chi(\mathcal{F}):=\sum_{i}(-1)^{i} h^{i}(\mathcal{F})$, the Euler characteristic of \mathcal{F}.

We say that:

- L is spanned if it is globally generated, at all points of X by $H^{0}(X, L)$.
- L is numerically effective ($n e f$, for short) if $L \cdot C \geq 0$ for all effective curves C on X.
- L is very ample if the complete linear system $|L|$ induce an embedding $X \rightarrow \mathbb{P}^{N}$, where $N=h^{0}(X, L)-1$.
- We say that L is ample if exsists $m>0$ such that $L^{\otimes m}$ is very ample.

Degenerate case

Let (X, L) be a polarized variety, and assume that $K_{X}=\lambda L$ for some $\lambda \in \mathbb{Q}$, so that $\left\langle K_{X}, L\right\rangle$ becomes a line.
Even in this case we can consider the polynomial

$$
p(x, y)=\chi\left(x K_{X}+y L\right),
$$

defining a plane curve, which we call the degenerate Hilbert curve, say Γ_{0}, of (X, L). Writing $t:=\lambda x+y$,

$$
p(x, y)=\wp(t) \in \mathbb{C}[t]
$$

is a polynomial of degree $n:=\operatorname{dim}(X)$ in t and its zeros correspond to the slice $\mathbb{C}_{(t)} \cap V_{X}$. Moreover, Γ_{0} is the union of n parallel lines, ℓ_{j}, of equation $\lambda x+y-t_{j}=0$, where t_{j} are the roots of $\wp(t), j=1, \ldots, n$. We refer to this situation as the "degenerate case".

EXAMPLE:

To produce an example, we can consider the polarized variety $(X, L)=\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(3)\right)$, clearly $K_{X}=-3 L$.
The Hilbert curve splits in two parallel lines, $r: x-3 y-2=0$ e $t: x-3 y-1=0$. We can also observe that the Hilbert curve is symmetric respect to $C=\left(\frac{1}{2}, 0\right)$.

Hilbert variety: the general framework
Here we outline how to obtain the Hilbert variety associated to a smooth n-fold X. The Hilbert variety does not depend by any basis of $\operatorname{Pic}(X)$ Let $\operatorname{Pic}_{0}(X) \subset \operatorname{Pic}(X)$ denote the subgroup of topologically trivial line bundles. Set $\mathbf{N}(X):=\left(\operatorname{Pic}(X) / \operatorname{Pic}_{0}(X)\right) \otimes_{\mathbb{Z}} \mathbb{C}$. The Euler characteristic map

$$
\chi: \operatorname{Pic}(X) \rightarrow \mathbb{Z}
$$

defined by $L \mapsto \chi(L)$, gives rise to a polynomial function

$$
p: \mathbf{N}(X) \rightarrow \mathbb{C}
$$

Note that $\mathbf{N}(X) \cong \mathbb{A}_{\mathbb{C}}^{\rho}$, where $\rho:=\rho(X)$ is the Picard number of X. Via this isomorphism, if $\mathbf{N}(X)=\left\langle L_{1}, \ldots, L_{\rho}\right\rangle$ with $L_{1}, \ldots, L_{\rho} \in \operatorname{Pic}(X)$ and writing $\mathcal{L}=\sum_{i=1}^{\rho} x_{i} L_{i} \in \mathbf{N}(X), x_{i} \in \mathbb{C}$, the image

$$
p(\mathcal{L})=p\left(x_{1}, \ldots, x_{\rho}\right)
$$

is the evaluation in \mathcal{L} of the polynomial $p \in \mathbb{C}\left[x_{1}, \ldots, x_{\rho}\right]$, when we consider x_{1}, \ldots, x_{ρ} as complex variables. In other words, for x_{1}, \ldots, x_{ρ} integers, we consider the Hilbert polynomial

$$
\chi\left(x_{1}, \ldots, x_{\rho}\right):=\chi\left(x_{1} L_{1}+\cdots+x_{\rho} L_{\rho}\right),
$$

and we denote by $p\left(x_{1}, \ldots, x_{\rho}\right)$ the polynomial $\chi\left(x_{1}, \ldots, x_{\rho}\right)$ when we consider x_{1}, \ldots, x_{ρ} as complex variables.
Let us consider the affine variety $V_{X}:=V(p)$, which is an hypersurface of $\operatorname{degree} \operatorname{dim}(X)$ in $\mathbf{N}(X) \cong \mathbb{A}_{\mathbb{C}}^{\rho}$. We say that V_{X} is the (affine) Hilbert variety associated to X.

PROPERTIES OF V_{X} :

- V_{X} is symmetric with respect to $C=\left(\frac{1}{2}, 0, \ldots, 0\right) \in \mathbb{A}^{\rho}$;
- For n even, if $C \in V_{X}$, then V_{X} is singular at C;
- For any n, if $C \in V_{X}$ is a point of multiplicity $n-1$, then C is a point of multiplicity n of V_{X}.

EXAMPLE

Let X be a smooth element in $\left|\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(4,4)\right|$ and let $L=\left(\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(1,2)\right)_{X}$ Direct computations give for the Hilbert polynomial of the polarized pair Direct computations
(X, L) the expression

$$
p(x, y)=(2 x+3 y-1)\left(2 x^{2}+6 x y+4 y^{2}-2 x-3 y+8\right)
$$

Hilbert curve

Let X be a projective variety of dimension n, let L be ample line bundles on X and consider the Hilbert polynomial

$$
\chi(x, y):=\chi\left(x K_{X}+y L\right)
$$

with $x, y \in \mathbb{Z}$. Let $p(x, y)$ be the polynomial $\chi(x, y)$ when we consider x, y and z as complex variables. The zeroes of $p(x, y)$ correspond to taking a slice of the Hilbert variety V_{X} by the 2-dimensional vector subspace $\mathbb{C}_{(x, y)}^{2} \subseteq \mathbf{N}(X)\left(\mathbb{C}_{(x, y)}^{2}=\left\langle K_{X}, L\right\rangle\right.$ whenever K_{X}, L are \mathbb{C}-linearly independent). We will also write

$$
V_{(X, L)}:=\mathbb{C}_{(x, y)}^{2} \cap V_{X}
$$

and we will say that the degree $n:=\operatorname{dim}(X)$ affine curve $\Gamma:=V_{(X, L)}$ is the Hillbert curve of the polarized variety (X, L)
For example, if $n=3, \Gamma$ is an elliptic curve as soon as it is not singular.

HILBERT CURVES FOR SPECIAL VARIETIES

This is a sample of general structure result we have.
Theorem 1 Let X be a smooth n-dimensional variety, and let $\varphi: X \rightarrow Y$ be a morphism onto a normal variety Y of dimension $\operatorname{dim}(Y)<\operatorname{dim}(X)$. Let L be a φ-nef and φ-big line bundle on X, and assume that for coprime positive integers $a, b, K_{X}+\frac{a}{b} L=\varphi^{*} A$ for som \mathbb{Q}-line bundle A on Y. Then $\chi\left(x K_{X}+y L\right)=0$ for all integers x, y \mathbb{Q}-line bundle A on Y. Then $\chi\left(x K_{X}+y L\right)=0$ for all integers x, y
belonging to the $a-1$ parallel lines $a x-b y-i=0$ for $i=1, \ldots, a-1$. In belonging to the $a-1$ parallel lines $a x-b y-i=0$ for $i=1$,
particular, for some degree $n-a+1$ factor $R(x, y)$ we have

$$
p(x, y)=\prod_{i=1}^{a-1}(a x-b y-i) R(x, y) .
$$

This figure shows the Hilbert curve associated to a polarized 3 -fold (X, L), where X is a scroll over a curve Y of genus $g=2$. So it follows that

$$
K_{X}+3 L=\varphi^{*} A
$$

for an ample line bundle on Y. It is easy to show that the Hilbert cubic splits in three lines.

TWO OPEN QUESTIONS

- To analyze the Hilbert curve associated to a polarized 4-fold (X, L). In this case we would deal with quartic plane curves
- To study bipolarized varieties, namely, 3-tuples (X, L_{1}, L_{2}) where L_{1} and L_{2} are ample line bundle on X. In this case we consider the Hilbert surface associated to the bipolarized variety. If X is a 3 -fold, then we deal with a cubic surface.

