On (Subideal) Border Bases and Their Generalization to Modules

Markus Kriegl

Fakultät für Informatik und Mathematik, Universität Passau, Germany

Notation

- $\triangleright P = K[x_1, \dots, x_n]$ is the polynomial ring over a field K.
- $ightharpoonup \mathbb{T}^n$ is the monoid of all terms $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ with $\alpha_i \in \mathbb{N}$ in P.
- $ightharpoonup P^r$ is the free P-module with canonical basis $\{e_1,\ldots,e_r\}$.
- $\mathbb{T}^n\langle e_1,\ldots,e_r\rangle$ is the monoid of all terms in P^r , i. e. elements of the form $te_k\in P^r$ with $t\in\mathbb{T}^n$ and $k\in\{1,\ldots,n\}$.

Order Modules and Their Borders [4]

- A finite set $\mathcal{O} \subseteq \mathbb{T}^n$ is called an **order ideal** if it is closed under forming divisors.
- ▶ For an order ideal $\mathcal{O} \subseteq \mathbb{T}^n$, we let the **border** of \mathcal{O} be

$$\partial \mathcal{O} = (x_1 \cdot \mathcal{O} \cup \cdots \cup x_n \cdot \mathcal{O}) \setminus \mathcal{O} \subseteq \mathbb{T}^n.$$

Let $\mathcal{O}_1, \ldots, \mathcal{O}_r \subseteq \mathbb{T}^n$ be order ideals. Then

$$\mathcal{M} = \mathcal{O}_1 \cdot e_1 \cup \cdots \cup \mathcal{O}_r \cdot e_r \subseteq \mathbb{T}^n \langle e_1, \ldots, e_r \rangle$$

is called an **order module** and

$$\partial \mathcal{M} = \partial \mathcal{O}_1 \cdot e_1 \cup \cdots \cup \partial \mathcal{O}_r \cdot e_r \subseteq \mathbb{T}^n \langle e_1, \dots, e_r \rangle$$

is called the **border** of \mathcal{M} .

Module Border Bases [4]

Let $\mathcal{M} = \{t_1 e_{\alpha_1}, \dots, t_{\mu} e_{\alpha_{\mu}}\}$ be an order module with border $\partial \mathcal{M} = \{b_1 e_{\beta_1}, \dots, b_{\nu} e_{\beta_{\nu}}\}$ where we have $t_i, b_j \in \mathbb{T}^n$ and $\alpha_i, \beta_j \in \{1, \dots, r\}$.

A set of vectors $\mathcal{G} = \{\mathcal{G}_1, \dots, \mathcal{G}_{\nu}\} \subseteq P^r$ is called an \mathcal{M} -module border prebasis if the vectors have the form

$$\mathcal{G}_j = b_j e_{eta_j} - \sum_{i=1}^{\mu} c_{ij} t_i e_{lpha_i}$$

with $c_{ij} \in K$.

Let $\mathcal{G} = \{\mathcal{G}_1, \dots, \mathcal{G}_{\nu}\} \subseteq P^r$ be an \mathcal{M} -module border prebasis and let $U \subseteq P^r$ be a P-submodule. We call \mathcal{G} an \mathcal{M} -module border basis of U if $\mathcal{G} \subseteq U$, if the set

$$\overline{\mathcal{M}} = \{t_1 e_{\alpha_1} + U, \dots, t_{\mu} e_{\alpha_{\mu}} + U\} \subseteq P^r/U$$

is a K-vector space basis of P^r/U , and if $\#\overline{\mathcal{M}} = \mu$.

Direct Generalizations from Border Bases [4]

- ► higher borders, an index
- ▶ existence and uniqueness
- ▶ a division algorithm, normal remainders, normal forms
- ► characterizations via
 - ► a special generation property
 - ▶ border form modules
 - rewrite rules
 - ► commuting matrices
 - ▶ liftings of border syzygies
- ► a Buchberger criterion
- ▶ an algorithm for the computation using linear algebra

Schreyer's Theorem for Module Border Bases [1]

Let $\mathcal{G} = \{\mathcal{G}_1, \dots, \mathcal{G}_{\nu}\} \subseteq P^r$ be an \mathcal{M} -module border basis of $\langle \mathcal{G} \rangle$, let $\Lambda \subseteq P^{\nu}$ be the set of neighbor liftings of \mathcal{G} , and let $\{\varepsilon_1, \dots, \varepsilon_{\nu}\}$ be the canonical basis of P^{ν} . Then we can explicitly construct a term ordering τ on $\mathbb{T}^n \langle \varepsilon_1, \dots, \varepsilon_{\nu} \rangle$ such that Λ is a τ -Gröbner basis of $\operatorname{Syz}_P(\mathcal{G}_1, \dots, \mathcal{G}_{\nu})$.

Further Notation

- $\mathcal{M} = \{t_1 e_{\alpha_1}, \dots, t_{\mu} e_{\alpha_{\mu}}\} \subseteq \mathbb{T}^n \langle e_1, \dots, e_r \rangle$ is an order module with $t_i \in \mathbb{T}^n$ and $\alpha_i \in \{1, \dots, r\}$.
- $\mathcal{G} = \{\mathcal{G}_1, \dots, \mathcal{G}_{\nu}\} \subseteq P^r$ is an \mathcal{M} -module border prebasis.
- $M = \langle m_1, \ldots, m_r \rangle$ is a finitely generated P-module.
- $\varphi: P^r \to M, e_k \mapsto m_k$ is a P-module epimorphism.

Generalized Module Border Bases [4]

- We call the set $\varphi(\mathcal{G}) \subseteq M$ an (\mathcal{M}, φ) -module border prebasis.
- We call $\varphi(\mathcal{G}) \subseteq M$ an (\mathcal{M}, φ) -module border basis of a P-submodule $U \subseteq M$ if $\varphi(\mathcal{G}) \subseteq U$, if the set

$$\overline{\varphi(\mathcal{M})} = \{t_1 m_{\alpha_1} + U, \dots, t_{\mu} m_{\alpha_{\mu}} + U\} \subseteq M/U$$

is a K-vector space basis of M/U, and if $\#\overline{\varphi(\mathcal{M})} = \#\varphi(\mathcal{M})$.

Characterization [4]

Assume that $\varphi|_{\mathcal{M}}$ is injective. Then the following conditions are equivalent.

- The (\mathcal{M}, φ) -module border prebasis $\varphi(\mathcal{G}) \subseteq M$ is an (\mathcal{M}, φ) -module border basis of $\langle \varphi(\mathcal{G}) \rangle$.
- The \mathcal{M} -module border prebasis $\mathcal{G} \subseteq P^r$ is an \mathcal{M} -module border basis of $\langle \mathcal{G} \rangle$ and we have $\ker(\varphi) \subseteq \langle \mathcal{G} \rangle$.

Remarks [4]

- The assumption that $\varphi|_{\mathcal{M}}$ is injective is crucial, i. e. there are generalized module border bases which cannot be characterized with the above theorem.
- ► This characterization allows us to define many of the concepts of module border bases, e.g. a division algorithm, for finitely generated *P*-modules.
- We can use this characterization to compute generalized module border bases if we can computed $\ker(\varphi) \subseteq P^r$.

Applications [4]

- "usual" border bases (see for instance [3, Section 6.4]):
- $r=1, M=P, \varphi=\mathrm{id}_P$
- can even be considered as module border bases
- ▶ subideal border bases (see for instance [2]):
- ▶ $M = \langle m_1, \dots, m_r \rangle \subseteq P$ with polynomials $m_1, \dots, m_r \in P \setminus \{0\},$ $\varphi : P^r \to M, e_k \mapsto m_k$
- can not be considered as module border bases, in general
- ► construction as generalized module border bases yields new results, e.g. characterizations and an algorithm for their computation

Bibliography

- [1] Martin Kreuzer and Markus Kriegl, **Gröbner bases for syzygy** modules of border bases, 2013 (in preparation).
- [2] Martin Kreuzer and Henk Poulisse, **Subideal border bases**, Mathematics of Computation **80** (2011), 1135–1154.
- [3] Martin Kreuzer and Lorenzo Robbiano, Computational Commutative Algebra 2, Springer, Heidelberg, 2005.
- [4] Markus Kriegl, **Module border bases**, 2013 (in preparation).

CoCoA-School 2013 in Osnabrück 10.-14.06.2013 markus.kriegl@uni-passau.de