Differents for a set of points in P},
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Algorithm 4. Let X = {py, ..., ps} be a set of s distinct K-rational points in P} such that XNZ(Xy) =0,

General setting
let 1 (X) be the homogeneous vanishing ideal of X, let R = P/J"(X) be the homogeneous coordinate

Throughout this poster we let K be an arbitrary field, let X = {py,..., p;} be a set of s distinct K-rational
points in the projective space P% such that XN Z"(Xy) = 0. We equip P = K[Xy, ..., X,,| with its standard
grading deg(X;) = 1, and let J"(X) be the homogeneous vanishing ideal of X in P. Then R = P/J"(X) =

;>0 Ri 1s the homogeneous coordinate ring of X in P. The image of X; in R is denoted by x; fori =0, ..., n.

ring of X, and let < be a term ordering on T" "' = T(Xy, X1, ..., X,,). Consider the following instructions.

1) Compute the reduced <s-Grobner basis {F\,...,F,} of J7(X) by using the Projective Buchberger-
Moller Algorithm.

2) Form the polynomial ring Q = K[Xo,X1,....,X,,11,....Y,| and equip it with the standard grading

Differents for a set of points in [P (deg(X;) = deg(Y;) = 1), and form I'Q = (Fi(Xo, Y1, .... Y»), ..., (X0, Y1, ..., ).
Let J denote the kernel of the canonical multiplication map  : R Q) R — R,r @ r' — rr’. The univer- 3)Let <5 be a term ordering on T(Xo,Xi,...,X,,11,....Y,). Compute a <g-Grobner basis H =
sal derivation of the K[xo|-algebra R is the homogeneous K [xo|-linear map dg k., : R — J/J* given by {H\,...,H,} of the homogeneous colon ideal
dr k1 (1) = r® 1 —1®r+ J?, and the module of Kihler differentials of the K [xo|-algebra R is the graded
R 1 _ g/ : . . L=(T"(X)0+TI'Q):0 (X1 —Y1,...X, —Y,) +1'Q).
-module Q, IKlxo] = d/d. We known that xy is not a zerodivisor of R and R is a graded free K|x(|-module

of rank 5. Let Q"(R) be the homogeneous quotient ring of R, i.e. 4) Compute a reduced <s-Grobner basis {Hj,...,H),} of Jy = y(Iy), where vy is given by (|I). Let m; =

r : .. / 0 / / / o
O'(R) = {Z |1, € R,#' is a homogeneous non-zerodivisor}. deg(H)) fori=1,...,t". We sort the set {H|,...,H),} such that m; <--- <my.
r

5) We denote the image of H in R by h; for i = 1,...,t', and compute the set
e The homogeneous ideal Yy(R/K|xp]) = 1 (Anngg K] r(d)) C R is called the Noether different of R with
respect to xp. O ={h|ie{l,. '} ,H ¢ (H{,...H_|,F,....F,)}.

1

e The first non-zero Fitting 1deal of €2, JKxo]

denoted by ¥¢(R/K|xo]).

1s called the Kahler different of R with respect to xy and
6) Return the set ¥ C R and stop.

This is an algorithm which computes a minimal homogeneous system of generators of the Noether-

e The image of the homomorphism of graded R-modules . . .
Dedekind different Ox(R/K |xo|) of R with respect to x,.

Y

D HomK[xO] (RaK[XO]) — HomK[xO,xal](Qh(R)7K[x07x61]) — Qh(R)

. Example
(P — (P ® ldK[_xO,xal] 9) .« e . .

Let X = {pi,...,ps} C Pg be a set of 8 distinct points with p; = (1:0:0),

is a homogeneous fraction R-ideal €g ki, of Q"(R), it is called the Dedekind complement module of p2=(1:0:1),p3=(1:1:0),ps=(1:1:1),ps=(1:0:2), pe=(1:2:0), B

R with respect to xy. Its inverse, Op(R/K|xo]) = @I;}K[xo] ={x€ Q"(R) | x-Cg/xp, C R}, is called the p7=(1:2:1),and pg = (1:1:2). Sketch in the affine plane A = D. (X)) =

Dedekind different of R with respect to xy. {p=1(co:c1:c2) €Pg | co# 0} as in beside figure. We use P = Q[Xp, X1, X, 0 o

We have relations between Ux(R/K|xo]), Uy(R/K|xo]), and ¥p(R/K|xo]) as follows. R = P/J%(X) = K[xo,x1,X;], and the term ordering DegRevLex. By writing |
and applying a CoCoA (an ApCoCoA) function which implements Algorithm
o e 1
Theorem 1 (Ernst Kunz). Let m be the minimal number of generators of £, IKlxg)" Then we have we calculate Bx(R/Q[xo]) = (x4 — 3xox> + 3 /2x* + 27 /Axox1x2 — 9 /4x2x2 — oh . o |

3x0:3 — 9/4x105 -+ 3/2x5, x5 +5/8x0x5 — 2x105 +1/2453, x7 +429/16x0%5 —

Up(R/K|x0])" € Ox(R/K|[x0]) € On(R/K|x0]) = Op(R/K|[x0])- 33,2t — 93/16x3).

Set Ux(R/K|xp]) := On(R/K|xo]) = Op(R/K|xp]). We say Ux(R/K |xy|) the Noether-Dedekind different of
R with respect to x.

Hilbert functions of the differents

Let M be a finitely generated graded R-module.

e The Hilbert function of M is defined by HFy,(i) = dimg(M;) for all i € Z. In particular, the Hilbert
function of R is given by HFx(i) = dimg(R;) for i € Z.

Proposition 2 (Ernst Kunz). Let X C P% be a complete intersection with 77 (X) = (Fy, ..., F,) C P, where

F; is a homogeneous polynomial of degree d; for j = 1,...,n. Then we have

o Ux(R/Klxo|) = Ox(R/K|x0)) = (‘3((F lF ”)), where g(Fl """ ) is a non-zerodivisor of R and has degree

(x17...,.x,'n)

deg (8(F1,...,Fn)) —Y" di—n e The regularity index of HF,, 1s called the regularity index of M and 1s denoted by ry,. The regularity
XyiXy) /! =j=1 . . .

ek ’F ; ) ’ | index of HFx will be denoted by rx.
¢ xo] — < — 2 > . : . i i

® CR/Klxo] (8(x1 ..... xn)> R It is well-known that the Hilbert function HFx satisfies HFx (i) = O for i < 0, HFx(i) = s for i > rx, and

How to compute the differents for a set of points? 0 < 1 =HFx(0) < HFx(1) < --- < HFx(rx) = s.

In order to compute the differents, we let {Fj,...,F,}, r > n, be a homogeneous generating system

The Hilbert functions and the regularity indices of differents are described in the following proposition.
of J*(X) C P. Firstly, we observe that the Kihler different ¥x(R/K|xo]) is generated by the n-minors

of the Jacobian matrix (%) 1 - Thus, 1t 18 not hard to write a CoCoA (an ApCoCoA) func- Proposition 3.
tion to compute Vg (R/K|xp)). i\zld&,rwe need to find a way to compute the Noether-Dedekind different ° We have HF@K(R/K[xo])(i) — HFﬁx(R/K[xo])(i) = 0 fori <0 and HF g, g/ [xo])(i) = HFy, (r/x [xo])(i) = s for
Ox(R/K|xq]). We let Y1,...,Y, be new indeterminates, let F/ = F;(Xy,Y;,....Y,) fori=1,...,r, and let I’ i > 0.
be the ideal of K|Xy,Y),...,Y,| generated by {Fj,...,F'}. We denote the standard graded polynomial ring e The regularity index of Ox(R/K |xo|) is exactly 2rx.
K[Xo,X,....Xn, Y1,....Y,] by O, denote R|X, ..., X,] by S, and denote the homogeneous ideal in Q generated o The regularity index of Ox(R/K[xo]) satisfies 2rs < rg.(r/xig)) < (n+ 1)rx.
/ / / + . .
b.y {F{,....F} (resp. by {Fi,....,F.}) by I'Q (resp. J7(X)Q). Then we have the following commutative o [f X is arithmetically Gorenstein (i.e. R is a Gorenstein ring), then HF . (g /k[x,)) () = HFx (i — rx) for
diagram alli € 7.
Q v P (1) . . . . . . .
i l o If X'is a complete intersection, then HF (g /k(x,)) (1) = HF s, (r/k 1) () = HFx (i — ) for all i € Z.

Q/I’QLS = R|Xi, ...,Xn]iR ®K[x0]Ri>R

where p is an R-algebra epimorphism given by p(X;) = 1 ®x; fori = 1,...,n; ¢ is a K|x]-algebra isomor- Differents for Cayley-Bacharach schemes

phism given by ¢(Y;+1'Q) = x; fori=1,...,n and ¢(X; +1'Q) = X; for j =0,...,n; and y is a P-algebra A set of s distinct K-rational points X = {p,..., p;} C P% is called a Cayley-Bacharach scheme, if every
epimorphism defined by y(Y;) = X; for j=1,....n. hypersurface of degree less than rx which contains all but one point of X must contain all the points of X.
Proposition 3. Let I, := (77 (X)Q4+1'0) ;o (X, = Y1,..., X, —Y,) +1'Q) C Q. Then the Noether-Dedekind The Hilbert functions of differents for a Cayley-Bacharach scheme are described as follows.
different of R w.r.t xy is given by Proposition 6. If X C IP% is a Cayley-Bacharach scheme, then for every i € 7, we have

IK(R/K[X()])Z{F(Xl,...,Xn) €ER ‘ FEJ+(X)S 'S (Xl—xl,...,Xn—xn)}
= (uopo@)(h/I'Q)
= y(I,)/T7(X). In particular, the Hilbert function of Ux(R/K|xo|) satisfies HFy gk (i) = 0 for i < rx,
HFy (r/kx)) (i) = s for i > 2rx, and

HF s, (r/kxo)) (£) < HF g (r/x 7)) () < HFx(i —rx).

Based on Proposition [3, we can compute a system of generators of ¥x(R/K|xy|). Another way to compute

Ox(R/K][xo]), we use the results of M. Kreuzer and S. Beck in the paper ”How fo compute the canonical 0 < HFy (r/k[xg)) (7x) < -+ SHFg (r/kro)) (275 — 1) < HF g (r/k o)) (27%) = 5.
dul t nts” t te the Dedekind 1 t dule €5 /1.1, and apply th lit o . . . . . . .

module of a set of poinis ™ to compute the Dedekind complementary module (., and apply the equality Our next proposition gives criteria for a set of s distinct K-rational points in P to be either an arithmetically

2r 2r . .
R/K = (x5 %) R Xy “Cr/Kklx1, Wh th larity index of HF later). . . .
Ox(R/K[xo]) = (67) 1R X0 ™ Cr/kizg)> Where rc is the regularity index o x (see later) Gorenstein scheme or a complete intersection.

Algorithm for computing a minimal homogeneous generating system of Ox(R/K|xy|) Proposition 7. Let X be a set of s distinct K-rational points in PZ.

The following algorithm enables us to compute a minimal homogeneous system of generators of the o X is arithmetically Gorenstein if and only if it is a Cayley-Bacharach scheme and HF (g /k(x,)) (rx) 7 0.

Noether-Dedekind different of R with respect to x;. e X is a complete intersection if and only if it is a Cayley-Bacharach scheme and HF g (g /k[xy)) (rx) # 0.
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