Le Ngoc Long

Department of Informatics and Mathematics University of Passau, Germany

General setting

Throughout this poster we let K be an arbitrary field, let $\mathbb{X}=\left\{p_{1}, \ldots, p_{s}\right\}$ be a set of s distinct K-rational points in the projective space \mathbb{P}_{K}^{n} such that $\mathbb{X} \cap z^{+}\left(X_{0}\right)=\emptyset$. We equip $P=K\left[X_{0}, \ldots, X_{n}\right]$ with its standard grading $\operatorname{deg}\left(X_{i}\right)=1$, and let $\mathcal{J}^{+}(\mathbb{X})$ be the homogeneous vanishing ideal of \mathbb{X} in P. Then $R=P / \mathcal{J}^{+}(\mathbb{X})=$ $\oplus_{i \geq 0} R_{i}$ is the homogeneous coordinate ring of \mathbb{X} in \mathbb{P}_{K}^{n}. The image of X_{i} in R is denoted by x_{i} for $i=0, \ldots, n$.

Differents for a set of points in \mathbb{P}_{K}^{n}

Let \mathcal{J} denote the kernel of the canonical multiplication map $\mu: R \otimes_{K\left[x_{0}\right]} R \rightarrow R, r \otimes r^{\prime} \mapsto r r^{\prime}$. The universal derivation of the $K\left[x_{0}\right]$-algebra R is the homogeneous $K\left[x_{0}\right]$-linear map $d_{R / K\left[x_{0}\right]}: R \rightarrow \mathcal{J} / \mathscr{J}^{2}$ given by $d_{R / K\left[x_{0}\right]}(r)=r \otimes 1-1 \otimes r+\partial^{2}$, and the module of Kähler differentials of the $K\left[x_{0}\right]$-algebra R is the graded R-module $\Omega_{R / K\left[x_{0}\right]}^{1}=\mathcal{J} / \mathcal{g}^{2}$. We known that x_{0} is not a zerodivisor of R and R is a graded free $K\left[x_{0}\right]$-module of rank s. Let $Q^{h}(R)$ be the homogeneous quotient ring of R, i.e.

$$
Q^{h}(R)=\left\{\left.\frac{r}{r^{\prime}} \right\rvert\, r, r^{\prime} \in R, r^{\prime} \text { is a homogeneous non-zerodivisor }\right\} .
$$

- The homogeneous ideal $\vartheta_{N}\left(R / K\left[x_{0}\right]\right)=\mu\left(\operatorname{Ann}_{R \otimes_{K\left[\chi_{0}\right.} R}(\mathcal{d})\right) \subseteq R$ is called the Noether different of R with respect to x_{0}.
- The first non-zero Fitting ideal of $\Omega_{R / K\left[x_{0}\right]}^{1}$ is called the Kähler different of R with respect to x_{0} and denoted by $\vartheta_{K}\left(R / K\left[x_{0}\right]\right)$.
- The image of the homomorphism of graded R-modules

$$
\begin{aligned}
\Phi: \operatorname{Hom}_{K\left[x_{0}\right]}\left(R, K\left[x_{0}\right]\right) & \hookrightarrow \operatorname{Hom}_{K\left[x_{0}, x_{0}^{-1}\right]}\left(Q^{h}(R), K\left[x_{0}, x_{0}^{-1}\right]\right) \xrightarrow{\rightarrow} Q^{h}(R) \\
\varphi & \mapsto \varphi \otimes \operatorname{id}_{K\left[x_{0}, x_{0}^{-1}\right]}
\end{aligned}
$$

is a homogeneous fraction R-ideal $\mathfrak{C}_{R / K\left[x_{0}\right]}$ of $Q^{h}(R)$, it is called the Dedekind complement module of R with respect to x_{0}. Its inverse, $\vartheta_{D}\left(R / K\left[x_{0}\right]\right)=\mathfrak{C}_{R / K\left[x_{0}\right]}^{-1}=\left\{x \in Q^{h}(R) \mid x \cdot \mathfrak{C}_{R / K\left[x_{0}\right]} \subseteq R\right\}$, is called the Dedekind different of R with respect to x_{0}.
We have relations between $\vartheta_{K}\left(R / K\left[x_{0}\right]\right), \vartheta_{N}\left(R / K\left[x_{0}\right]\right)$, and $\vartheta_{D}\left(R / K\left[x_{0}\right]\right)$ as follows
Theorem 1 (Ernst Kunz). Let m be the minimal number of generators of $\Omega_{R / K\left[x_{0}\right]}^{1}$. Then we have

$\vartheta_{D}\left(R / K\left[x_{0}\right]\right)^{m} \subseteq \vartheta_{K}\left(R / K\left[x_{0}\right]\right) \subseteq \vartheta_{N}\left(R / K\left[x_{0}\right]\right)=\vartheta_{D}\left(R / K\left[x_{0}\right]\right)$.

Set $\vartheta_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right):=\vartheta_{N}\left(R / K\left[x_{0}\right]\right)=\vartheta_{D}\left(R / K\left[x_{0}\right]\right)$. We say $\vartheta_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)$ the Noether-Dedekind different of R with respect to x_{0}.

Proposition 2 (Ernst Kunz). Let $\mathbb{X} \subseteq \mathbb{P}_{K}^{n}$ be a complete intersection with $\mathcal{J}^{+}(\mathbb{X})=\left(F_{1}, \ldots, F_{n}\right) \subseteq P$, where F_{j} is a homogeneous polynomial of degree d_{j} for $j=1, \ldots, n$. Then we have

- $\vartheta_{K}\left(R / K\left[x_{0}\right]\right)=\vartheta_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)=\left(\frac{\partial\left(F_{1}, \ldots F_{n}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}\right)$, where $\frac{\partial\left(F_{1}, \ldots, F_{n}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}$ is a non-zerodivisor of R and has degree $\operatorname{deg}\left(\frac{\partial\left(F_{1}, \ldots, F_{n}\right)}{\partial\left(x_{1}, \ldots, n_{n}\right)}\right)=\sum_{j=1}^{n} d_{j}-n$.
- $\mathfrak{C}_{R / K\left[x_{0}\right]}=\left\langle\left(\frac{\partial\left(F_{1}, \ldots F_{n}\right)}{\partial\left(x_{1}, \ldots, r_{n}\right)}\right)^{-1}\right\rangle_{R}$.

How to compute the differents for a set of points?

In order to compute the differents, we let $\left\{F_{1}, \ldots, F_{r}\right\}, r \geq n$, be a homogeneous generating system of $\mathcal{J}^{+}(\mathbb{X}) \subset P$. Firstly, we observe that the Kähler different $\vartheta_{K}\left(R / K\left[x_{0}\right]\right)$ is generated by the n-minors of the Jacobian matrix $\left(\frac{\partial F_{j}}{\partial x_{i}}\right)_{\substack{i=1, \ldots, n \\ i=1, \ldots,}}$. Thus, it is not hard to write a CoCoA (an ApCoCoA) function to compute $\vartheta_{K}\left(R / K\left[x_{0}\right]\right)$. Now we need to find a way to compute the Noether-Dedekind different $\vartheta_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)$. We let Y_{1}, \ldots, Y_{n} be new indeterminates, let $F_{i}^{\prime}=F_{i}\left(X_{0}, Y_{1}, \ldots, Y_{n}\right)$ for $i=1, \ldots, r$, and let I^{\prime} be the ideal of $K\left[X_{0}, Y_{1}, \ldots, Y_{n}\right]$ generated by $\left\{F_{1}^{\prime}, \ldots, F_{r}^{\prime}\right\}$. We denote the standard graded polynomial ring $K\left[X_{0}, X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right]$ by Q, denote $R\left[X_{1}, \ldots, X_{n}\right]$ by S, and denote the homogeneous ideal in Q generated by $\left\{F_{1}^{\prime}, \ldots, F_{r}^{\prime}\right\}$ (resp. by $\left\{F_{1}, \ldots, F_{r}\right\}$) by $I^{\prime} Q$ (resp. $\left.\mathcal{I}^{+}(\mathbb{X}) Q\right)$. Then we have the following commutative diagram

$$
\begin{equation*}
\stackrel{Q \stackrel{\psi}{Q}}{Q / I^{\prime} Q \xrightarrow{\underline{\phi}} S=R\left[X_{1}, \ldots, X_{n}\right] \stackrel{\rho}{-} R \otimes_{K\left[x_{0}\right]} R \stackrel{\mu}{-} \stackrel{P}{R}} \tag{1}
\end{equation*}
$$

where ρ is an R-algebra epimorphism given by $\rho\left(X_{i}\right)=1 \otimes x_{i}$ for $i=1, \ldots, n ; \phi$ is a $K\left[x_{0}\right]$-algebra isomorphism given by $\phi\left(Y_{i}+I^{\prime} Q\right)=x_{i}$ for $i=1, \ldots, n$ and $\phi\left(X_{j}+I^{\prime} Q\right)=X_{j}$ for $j=0, \ldots, n$; and ψ is a P-algebra epimorphism defined by $\psi\left(Y_{j}\right)=X_{j}$ for $j=1, \ldots, n$.

Proposition 3. Let $I_{1}:=\left(\mathcal{J}^{+}(\mathbb{X}) Q+I^{\prime} Q\right): Q\left(\left(X_{1}-Y_{1}, \ldots, X_{n}-Y_{n}\right)+I^{\prime} Q\right) \subseteq Q$. Then the Noether-Dedekind different of R w.r.t x_{0} is given by

$$
\begin{aligned}
\vartheta_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right) & =\left\{F\left(x_{1}, \ldots, x_{n}\right) \in R \mid F \in \mathcal{J}^{+}(\mathbb{X}) S: s\left(X_{1}-x_{1}, \ldots, X_{n}-x_{n}\right)\right\} \\
& =(\mu \circ \rho \circ \phi)\left(I_{1} / I^{\prime} Q\right) \\
& =\psi\left(I_{1}\right) / \mathcal{J}^{+}(\mathbb{X}) .
\end{aligned}
$$

Based on Proposition 3, we can compute a system of generators of $v_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)$. Another way to compute $\vartheta_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)$, we use the results of M. Kreuzer and S. Beck in the paper "How to compute the canonical module of a set of points" to compute the Dedekind complementary module $\mathfrak{C}_{R / K\left[x_{0}\right]}$, and apply the equality $v_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)=\left(x_{0}^{2 / \mathbb{X}}\right):_{R} x_{0}^{2 / \mathbb{X}_{X}} \mathfrak{C}_{R / K\left[x_{0}\right]}$, where $r_{\mathbb{X}}$ is the regularity index of $\mathrm{HF}_{\mathbb{X}}$ (see later).
Algorithm for computing a minimal homogeneous generating system of $\vartheta_{X}\left(R / K\left[x_{0}\right]\right)$
The following algorithm enables us to compute a minimal homogeneous system of generators of the Noether-Dedekind different of R with respect to x_{0}.

Algorithm 4. Let $\mathbb{X}=\left\{p_{1}, \ldots, p_{s}\right\}$ be a set of s distinct K-rational points in \mathbb{P}_{K}^{n} such that $\mathbb{X} \cap \mathbb{Z}^{+}\left(X_{0}\right)=\emptyset$, let $\mathcal{J}^{+}(\mathbb{X})$ be the homogeneous vanishing ideal of \mathbb{X}, let $R=P / \mathcal{J}^{+}(\mathbb{X})$ be the homogeneous coordinate ring of \mathbb{X}, and let $<_{\sigma}$ be a term ordering on $\mathbb{T}^{n+1}=\mathbb{T}\left(X_{0}, X_{1}, \ldots, X_{n}\right)$. Consider the following instructions. 1) Compute the reduced $<_{\sigma}$-Gröbner basis $\left\{F_{1}, \ldots, F_{r}\right\}$ of $\mathcal{J}^{+}(\mathbb{X})$ by using the Projective BuchbergerMöller Algorithm.
2) Form the polynomial ring $Q=K\left[X_{0}, X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right]$ and equip it with the standard grading $\left(\operatorname{deg}\left(X_{i}\right)=\operatorname{deg}\left(Y_{j}\right)=1\right)$, and form $I^{\prime} Q=\left(F_{1}\left(X_{0}, Y_{1}, \ldots, Y_{n}\right), \ldots, F_{r}\left(X_{0}, Y_{1}, \ldots, Y_{n}\right)\right)$.
3) Let $<_{\bar{\sigma}}$ be a term ordering on $\mathbb{T}\left(X_{0}, X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)$. Compute a $<_{{ }_{\sigma}}$-Gröbner basis $\mathcal{H}=$ $\left\{H_{1}, \ldots, H_{t}\right\}$ of the homogeneous colon ideal

$$
I_{1}=\left(\mathcal{J}^{+}(\mathbb{X}) Q+I^{\prime} Q\right): Q\left(\left(X_{1}-Y_{1}, \ldots, X_{n}-Y_{n}\right)+I^{\prime} Q\right) .
$$

4) Compute a reduced $<_{\sigma^{-}}$-Gröbner basis $\left\{H_{1}^{\prime}, \ldots, H_{t^{\prime}}^{\prime}\right\}$ of $J_{1}=\psi\left(I_{1}\right)$, where ψ is given by (1]). Let $m_{i}=$ $\operatorname{deg}\left(H_{i}^{\prime}\right)$ for $i=1, \ldots, t^{\prime}$. We sort the set $\left\{H_{1}^{\prime}, \ldots, H_{t^{\prime}}^{\prime}\right\}$ such that $m_{1} \leq \cdots \leq m_{t^{\prime}}$. 5) We denote the image of H_{i}^{\prime} in R by h_{i} for $i=1, \ldots, t^{\prime}$, and compute the set

$$
\vartheta=\left\{h_{i} \mid i \in\left\{1, \ldots, t^{\prime}\right\}, H_{i}^{\prime} \notin\left(H_{1}^{\prime}, \ldots, H_{i-1}^{\prime}, F_{1}, \ldots, F_{r}\right)\right\} .
$$

6) Return the set $\vartheta \subseteq R$ and stop

This is an algorithm which computes a minimal homogeneous system of generators of the NoetherDedekind different $\vartheta_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)$ of R with respect to x_{0}.

Example

Let $\mathbb{X}=\left\{p_{1}, \ldots, p_{8}\right\} \subseteq \mathbb{P}_{\mathbb{Q}}^{2}$ be a set of 8 distinct points with $p_{1}=(1: 0: 0)$, $p_{2}=(1: 0: 1), p_{3}=(1: 1: 0), p_{4}=(1: 1: 1), p_{5}=(1: 0: 2), p_{6}=(1: 2: 0)$, $p_{7}=(1: 2: 1)$, and $p_{8}=(1: 1: 2)$. Sketch in the affine plane $\mathbb{A}_{Q}^{2}=D_{+}\left(X_{0}\right)=$ $\left\{p=\left(c_{0}: c_{1}: c_{2}\right) \in \mathbb{P}_{\mathbb{Q}}^{2} \mid c_{0} \neq 0\right\}$ as in beside figure. We use $P=\mathbb{Q}\left[X_{0}, X_{1}, X_{2}\right]$, $R=P / \mathcal{J}^{+}(\mathbb{X})=K\left[x_{0}, x_{1}, x_{2}\right]$, and the term ordering DegRevLex. By writing and applying a CoCoA (an ApCoCoA) function which implements Algorithm 4. we calculate $\vartheta_{\mathbb{X}}\left(R / \mathbb{Q}\left[x_{0}\right]\right)=\left(x_{0}^{4}-3 x_{0} x_{1}^{3}+3 / 2 x_{1}^{4}+27 / 4 x_{0} x_{1} x_{2}^{2}-9 / 4 x_{1}^{2} x_{2}^{2}-\right.$ $3 x_{0} x_{2}^{3}-9 / 4 x_{1} x_{2}^{3}+3 / 2 x_{2}^{4}, x_{1}^{2} x_{2}^{3}+5 / 8 x_{0} x_{2}^{4}-2 x_{1} x_{2}^{4}+1 / 24 x_{2}^{5}, x_{1}^{5}+429 / 16 x_{0} x_{2}^{4}-$ $\left.33 x_{1} x_{2}^{4}-93 / 16 x_{2}^{5}\right)$.

Hilbert functions of the differents

Let M be a finitely generated graded R-module.

- The Hilbert function of M is defined by $\operatorname{HF}_{M}(i)=\operatorname{dim}_{K}\left(M_{i}\right)$ for all $i \in \mathbb{Z}$. In particular, the Hilbert function of R is given by $\mathrm{HF}_{\mathbb{X}}(i)=\operatorname{dim}_{K}\left(R_{i}\right)$ for $i \in \mathbb{Z}$.
- The regularity index of HF_{M} is called the regularity index of M and is denoted by r_{M}. The regularity index of $\mathrm{HF}_{\mathbb{X}}$ will be denoted by $r_{\mathbb{X}}$
It is well-known that the Hilbert function $\mathrm{HF}_{\mathbb{X}}$ satisfies $\mathrm{HF}_{\mathbb{X}}(i)=0$ for $i<0, \mathrm{HF}_{\mathbb{X}}(i)=s$ for $i \geq r_{\mathbb{X}}$, and

$$
0<1=\mathrm{HF}_{\mathbb{X}}(0)<\mathrm{HF}_{\mathbb{X}}(1)<\cdots<\mathrm{HF}_{\mathbb{X}}\left(r_{\mathbb{X}}\right)=s
$$

The Hilbert functions and the regularity indices of differents are described in the following proposition. Proposition 5.

- We have $\mathrm{HF}_{\vartheta_{K}\left(R / K\left[x_{0}\right]\right)}(i)=\mathrm{HF}_{\vartheta_{\Upsilon}\left(R / K\left[x_{0}\right]\right)}(i)=0$ for $i<0$ and $\mathrm{HF}_{\vartheta_{K}\left(R / K\left[x_{0}\right]\right)}(i)=\mathrm{HF}_{\vartheta_{\mathbb{K}}\left(R / K\left[x_{0}\right]\right)}(i)=s$ for $i \gg 0$.
- The regularity index of $\vartheta_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)$ is exactly $2 r_{\mathbb{X}}$.
- The regularity index of $\vartheta_{K}\left(R / K\left[x_{0}\right]\right)$ satisfies $2 r_{\mathbb{X}} \leq r_{\vartheta_{K}\left(R / K\left[x_{0}\right]\right)} \leq(n+1) r_{\mathbb{X}}$
- If \mathbb{X} is arithmetically Gorenstein (i.e. R is a Gorenstein ring), then $\mathrm{HF}_{\vartheta_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)}(i)=\mathrm{HF}_{\mathbb{X}}\left(i-r_{\mathbb{X}}\right)$ for all $i \in \mathbb{Z}$.
- If \mathbb{X} is a complete intersection, then $\mathrm{HF}_{\vartheta_{K}\left(R / K\left[x_{0}\right]\right)}(i)=\operatorname{HF}_{\vartheta_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)}(i)=\mathrm{HF}_{\mathbb{X}}\left(i-r_{\mathbb{X}}\right)$ for all $i \in \mathbb{Z}$.

Differents for Cayley-Bacharach schemes

A set of s distinct K-rational points $\mathbb{X}=\left\{p_{1}, \ldots, p_{s}\right\} \subseteq \mathbb{P}_{K}^{n}$ is called a Cayley-Bacharach scheme, if ever hypersurface of degree less than $r_{\mathbb{X}}$ which contains all but one point of \mathbb{X} must contain all the points of \mathbb{X}. The Hilbert functions of differents for a Cayley-Bacharach scheme are described as follows.
Proposition 6. If $\mathbb{X} \subseteq \mathbb{P}_{K}^{n}$ is a Cayley-Bacharach scheme, then for every $i \in \mathbb{Z}$ we have

$$
\mathrm{HF}_{\vartheta_{K}\left(R / K\left[x_{0}\right]\right)}(i) \leq \mathrm{HF}_{\vartheta_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)}(i) \leq \mathrm{HF}_{\mathbb{X}}\left(i-r_{\mathbb{X}}\right) .
$$

In particular, the Hilbert function of $\vartheta_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)$ satisfies $\mathrm{HF}_{\vartheta_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)}(i)=0$ for $i<r_{\mathbb{X}}$, $\operatorname{HF}_{\vartheta_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)}(i)=s$ for $i \geq 2 r_{\mathbb{X}}$, and

$$
0 \leq \operatorname{HF}_{\vartheta_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)}\left(r_{\mathbb{X}}\right) \leq \cdots \leq \operatorname{HF}_{\vartheta_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)}\left(2 r_{\mathbb{X}}-1\right)<\operatorname{HF}_{\vartheta_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)}\left(2 r_{\mathbb{X}}\right)=s
$$

Our next proposition gives criteria for a set of s distinct K-rational points in \mathbb{P}_{K}^{n} to be either an arithmetically Gorenstein scheme or a complete intersection.
Proposition 7. Let \mathbb{X} be a set of s distinct K-rational points in \mathbb{P}_{K}^{n}.
$\bullet \mathbb{X}$ is arithmetically Gorenstein if and only if it is a Cayley-Bacharach scheme and $\mathrm{HF}_{v_{\mathbb{X}}\left(R / K\left[x_{0}\right]\right)}\left(r_{\mathbb{X}}\right) \neq 0$.
$\bullet \mathbb{X}$ is a complete intersection if and only if it is a Cayley-Bacharach scheme and $\operatorname{HF}_{\vartheta_{K}\left(R / K\left[x_{0}\right]\right)}\left(r_{\mathbb{X}}\right) \neq 0$.

