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1. Introduction

• SCHUBERT–A MAPLE package was written by S. Katz and S. A. Strømme from 1992, and
updated to new versions of MAPLE by J.-M. Økland. However, it is no longer actively sup-
ported.
• SCHUBERT2 in MACAULAY2 has been developed by D. R. Grayson, M. E. Stillman, S. A.

Strømme, D. Eisenbud and C. Crissman.
•Our package is SCHUBERT3 which developed on SAGE and written by PYTHON program-

ming language. This package supports the computation in Intersection Theory on smooth
varieties. It deals with varieties, vector bundles on varieties, equivariant vector bundles on
varieties endowed with torus actions and morphisms between varieties.

2. SAGE Code
In order to use SCHUBERT3, we first must attach the file Schubert3.py to a running session
using the %attach command in SAGE. This file is available from the author upon request.
The current version of this package is the result of many discussions on mathematical back-
ground and on implementation algorithms, and of many hours of coding. It should not be
considered a complete, unchangeable, totally stable version. We will keep working on this
project by fixing bugs, improving algorithms, and by adding functionalities.

3. Varieties and Chow Rings
In SCHUBERT3, a variety is given by the dimenion, variables, degrees, and relations such that
we can determine its Chow ring.

3.1 Projective Spaces
An n-dimensional projective space Pn is given by dimension n, one variable h with deg(h) =
1 and one relation hn+1. Thus the Chow ring of Pn is

A∗(Pn) ∼= Z[h]/(hn+1),

where h is the hyperplane class of Pn.

3.2 Grassmannians
A Grassmannian G(k, n) is given by dimension k(n − k), n − k variables σ1, . . . , σn−k with
deg(σi) = i and n−k relations σ1i, i = k+1, . . . , n, where σi and σ1i are the special Schubert
classes on this Grassmannian. Thus its Chow ring has the form

A∗(G(k, n)) ∼=
Z[σ1, . . . , σn−k]

I
,

where the ideal I is generated by the σ1i, i = k+ 1, . . . , n. Moreover, this ring is graded with
deg(σi) = i.

Algorithm 1: Integration on Grassmannians

Input: The zero-dimensional cycle class α on the Grassmannian G(k, n). In fact, α is a
homogeneous polynomial of degree k(n− k) in Z[σ1, . . . , σn−k].

Output: The degree of cycle class α in the Chow ring of G(k, n), denoted by∫
G(k,n)

α.

1. Using Giambelli’s formula for computing the ideal I generated by

σ1i, i = k+ 1, . . . , n.

2. Reduce α modulo I, store f.
3. Return the leading coefficient of f.

4. Lines on Hypersurfaces
We want to compute the number of the lines on a general hypersurface of degree d = 2n−3 >
3 in Pn. This number is the degree of the top Chern class of the d-th symmetric power of the
tautological quotient bundle on G(n− 1, n+ 1). For example, there are 27 lines on a general
cubic hypersurface in P3 and 2875 lines on a general quintic threefold in P4.

5. Vector Bundles and Chern Classes
A vector bundle on a variety is given by the rank and the Chern classes or the Chern charac-
ter. The idea for implementation of vector bundles is based on the splitting principle.
An equivariant vector bundle on a variety endowed with the torus action is given by its weights
of the torus action on the ordinary vector bundle.

5.1 Splitting Principle
The splitting principle is a useful technique used to reduce questions about vector bundles to
the case of line bundles. The splitting principle is usually formalized as follows. Let E be a
vector bundle of rank r. We can regard the Chern classes of E as the elementary symmetric
polynomials in r variables α1, . . . , αr called the Chern roots of E. More precisely, we can write
formally the total Chern class of E as follows:

c(E) =

r∏
i=1

(1+ αi).

Equivalently, we have

c0(E) = 1, c1(E) =
∑
16i6r

αi, c2(E) =
∑

16i<j6r

αiαj, . . . , cr(E) = α1α2 . . . αr.

Let E and F be two vector bundles on a variety X with Chern roots (αi)i and (βj)j, respectively.
Then we have the following statements.
• E∨ has Chern roots (−αi)i.
• E⊕ F has Chern roots (αi, βj)i,j.
• E⊗ F has Chern roots (αi + βj)i,j.

• Symd E has Chern roots (αi1 + · · ·+ αid)i16···6id.
•∧dE has Chern roots (αi1 + · · ·+ αid)i1<···<id.

These give us the useful tools for implementing almost standard operations of the vector
bundles.

5.2 Chern Characters and Todd Classes
Using the notion of Chern roots, we can define formally the Chern character and the Todd
class of a vector bundle E as follows:

ch(E) =
r∑
i=1

exp(αi) , td(E) =
r∏
i=1

αi
1− exp(−αi)

,

where α1, . . . , αr are the Chern roots of E and the expressions in the αi are understood as
formal power series, i.e.

exp(αi) = 1+ αi +
1

2
α2i +

1

6
α3i + · · · ,

αi
1− exp(−αi)

= 1+
1

2
αi +

1

12
α2i + · · · .

Theorem 5.1 (Hirzebruch-Riemann-Roch). Let E be a vector bundle on a smooth, complete
variety X. Then we have the following formula

χ(X, E) =

∫
X

ch(E) · td(X),

where χ(X, E) denotes the Euler characteristic of E on X and td(X) denotes the Todd class
of the tangent bundle on X.

6. Chow Rings of Projective Bundles
Let E be a vector bundle of rank r + 1 on a smooth projective scheme X, and let P(E) be a
projective bundle of E on X. If p : P(E) → X is the projection morphism, then the pullback
p∗ : A(X)→ A(P(E)) is an injection of rings. Moreover, the Chow ring of P(E) has the form

A(P(E)) ∼=
A(X)[ζ]

(ζr+1 + c1(E)ζ
r + · · ·+ cr(E)ζ+ cr+1(E))

,

where ζ = c1(S∨) ∈ A1(P(E)), and S∨ is the dual of the tautological line bundle on P(E).

7. Conics on Quintic Threefolds
Let X be a general quintic threefold in P4. How many rational curves of degree d are con-
tained in X? This is a difficult question in enumerative geometry and still unresolved. In case,
d = 1, it was known in Section 4 that there are 2875 lines on X. In this section we will set up
the computation of the number of degree 2 rational curves (smooth conics) on a general quin-
tic threefold. This number was computed by S. Katz in 1985. Here is how the computation
can be made with SCHUBERT3.
Let G(3, 5) be the Grassmannian of planes in P4, with tautological subbundle S. The space of
smooth conics in P4 may be identified with the projective bundle P(Sym2(S∨)) over G(3, 5).

sage: G = Grassmannian(3,5)
sage: S = G.tautological_subbundle().dual()
sage: B = S.symmetric_power(2)
sage: PB = ProjectiveBundle(B)

The cycle class of smooth conics on a general quintic threefold is the top Chern class of
quotient vector bundle

A = Sym5(S∨) − Sym3(S∨)⊗ OP(Sym2(S∨))
(−1).

sage: V = PB.O(-1) & S.symmetric_power(3)
sage: A = S.symmetric_power(5) - V
sage: C = A.top_chern_class()

The number of smooth conics on a general quintic threefold is equal to the degree of this
cycle class in the Chow ring A∗(P(Sym2(S∨))),∫

P(Sym2(S∨))
c11(A).

sage: PB.integral(C)
609250

If p : P(Sym2(S∨))→ G(3, 5) is the projection morphism, then we have∫
P(Sym2(S∨))

c11(A) =

∫
G(3,5)

p∗(c11(A)).

This means that the number of smooth conics on a general quintic threefold is also equal to
the degree of p∗(c11(A)) in the Chow ring A∗(G(3, 5)).

sage: p = PB.projection_morphism()
sage: G.integral(p.pushforward(C))
609250

8. Further Works

• Excess intersection formula, chow rings of blowups.
• Bott’s formula and Gromov-Witten invariants.
• SINGULAR code, available at the homepage of SINGULAR.
• COCOA???


